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ABSTRACT

The variety of accents has posed a big challenge to speech
recognition. The Accented English Speech Recognition Challenge
(AESRC2020) is designed for providing a common testbed and pro-
moting accent-related research. Two tracks are set in the challenge
– English accent recognition (track 1) and accented English speech
recognition (track 2). A set of 160 hours of accented English speech
collected from 8 countries is released with labels as the training set.
Another 20 hours of speech without labels is later released as the test
set, including two unseen accents from another two countries used
to test the model generalization ability in track 2. We also provide
baseline systems for the participants. This paper first reviews the
released dataset, track setups, baselines and then summarizes the
challenge results and major techniques used in the submissions.

Index Terms— Accented speech recognition, accent recogni-
tion, acoustic modeling, end-to-end ASR

1. INTRODUCTION

Accent is one of the major variable factors in human speech, which
poses a great challenge to the robustness of automatic speech recog-
nition (ASR) systems. English is one of the most common languages
speaking around the world. It is inevitable to produce varieties of
English accents in different areas. The difference between accents is
mainly reflected in three aspects of pronunciation: stress, tone and
duration, which brings difficulties to ASR models. There has been
much interest in accent recognition to distinguish different English
accents [1, 2, 3], and it is also valuable to improve the generalization
capability of ASR models on varieties of English accents.

The Interspeech2020 Accented English Speech Recognition
Challenge (AESRC)1 is specifically designed to provide a common
testbed and a sizable dataset for both English accent recognition (set
as track 1) and accented English speech recognition (set as track 2).
A 180-hour speech dataset is opened to participants, which contains
10 types of English accents – Chinese, American, British, Korean,
Japanese, Russian, Indian, Portuguese, Spanish and Canadian. The
two tracks run on the dataset to compare the submissions fairly.

The rest of this paper is organized as follows. Section 2 is a sum-
mary of related works on accent recognition, robust speech recogni-
tion on accented speech and current datasets available for related re-
search. Section 3 describes the dataset released by the challenge. In
Section 4, the baseline experiments are introduced. Section 5 mainly
summarizes the outcome of the challenge, specifically discussing on

∗ The first two authors contributed equally to this work.
† Lei Xie is the corresponding author.
1 https://www.datatang.ai/interspeech2020

the major techniques used in the submitted systems. Section 6 con-
cludes the challenge with important take-home messages.

2. RELATED WORK

Accent recognition is similar to language identification [4, 5, 6] and
speaker identification [7, 8, 9]. They all classify variable-length
speech sequences to utterance-level posteriors to obtain accent,
speaker or language ID. In order to distinguish different accents
in English, Teixeira et al. [10] proposed to use context-dependent
HMM units to optimize parallel networks and Deshpande et al. [11]
introduced format frequency features into GMM models. Ahmed
et al. [12] presented VFNet (Variable Filter Net), a convolutional
neural network (CNN) based architecture which applies filters with
variable size along the frequency band to capture a hierarchy of
features, aiming at improving the accuracy of accent recognition in
dialogues. Winata et al. [13] proposed an accent-agnostic approach
that extends the model-agnostic meta-learning (MAML) algorithm
for fast adaptation to unseen accents. Transfer learning and multi-
task learning were also found useful for spoken accent recognition
tasks [14, 15].

As for speech recognition on accented speech, adaptation meth-
ods and adversarial training related techniques were proved effec-
tive. Assuming that the labelled data for specific accent is limited,
the adaptation method is first to train a base model with standard
speech data that is usually with a large volume, and then adapt
the model to the specific accent with the respective data [16, 17].
Domain adversarial training (DAT) was used by Sun et al. to ob-
tain accent-independent hidden representation in order to achieve a
high-performance ASR system for accented Chinese [18]. A gen-
erative adversarial network (GAN) based pre-training framework
named AIPNet was proposed by Chen et al.[19]. They pre-trained
an attention-based encoder-decoder model to disentangle accent-
invariant and accent-specific characteristics from acoustic features
by adversarial training. Accent-dependent acoustic modeling ap-
proaches take accent-related information into network architec-
ture by accent embedding, accent-specific bottleneck features or i-
vectors [20, 21]. In a closed set of known accents, accent-dependent
models usually outperform the accent-independent universal mod-
els, while the latter ones usually achieve a better average model
under the situations where accent labels are unavailable.

English accent recognition and accented English speech recog-
nition are also hindered by data insufficiency. Existing open-source
accented English datasets are limited in data volume and accent va-
rieties [22, 23]. This motivates us to provide a sizable dataset and a
comon testbed to advance the research in the related areas.
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Table 1. Results of baseline systems on the separated cv set.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Track 1: English Accent Recognition 

 Network 
Accuracy (%) 

Total RU KR US PT JPN UK CHN IND 

Self-Attention Classification Network 

1a: Transformer-3L 54.1 30.0 45.0 45.7 57.2 48.5 70.0 56.2 83.5 

1b: Transformer-6L 52.2 34.0 43.7 30.6 65.7 44.0 74.5 50.9 75.2 

1c: Transformer-12L 47.8 49.6 26.0 21.2 51.8 42.7 85.0 38.2 66.1 

1d: ASR init-Transformer-12L 76.1 75.7 55.6 60.2 85.5 73.2 93.9 67.0 97.0 

Track 2: Accented English Speech Recognition 

 Training Strategy LM and Decoding 
WER (%) 

Ave. RU KR US PT JPN UK CHN IND 

Chain Model 

2a: Accent160 

3-gram LM 

13.68 6.67 11.46 15.95 10.27 9.78 16.88 20.97 17.48 

2b: Accent160 (Libri960 Base) 13.13 6.61 10.95 15.33 9.79 9.75 16.03 19.68 16.93 

2c: Accent160+Libri160 13.14 6.95 11.76 13.05 9.96 10.15 14.21 20.76 18.26 

Transformer 

2d: Accent160 +0.3 RNNLM 8.63 5.26 7.69 9.96 7.45 6.79 10.06 11.77 10.05 

2e: Accent160 (Libri960 Base) +0.3 RNNLM 6.92 4.6 6.4 7.42 5.9 5.71 7.64 9.87 7.85 

2f: Accent160+Libri160 

- 8.38 5.35 9.07 8.52 7.13 7.29 8.6 12.03 9.05 

+0.3 RNNLM 7.48 4.68 7.59 7.7 6.42 6.37 7.76 10.88 8.41 

+0.3 RNNLM + 0.3 CTC 7.38 4.76 7.81 7.71 6.36 6.4 7.23 10.77 8.01 

3. OPEN DATASET

An accented English speech dataset was released to participants in
the challenge. It was collected from both native speakers in UK and
US, and also English speakers in China, Japan, Russia, India, Portu-
gal, Korea, Spain and Canada. We suppose that the data collected in
each country is belong to one type of accent of English, and in total
we have 10 ‘accents’. The speakers, aged between 20 to 60, were
asked to read sentences covering common conversation and human-
computer speech interaction commands. All the speech recordings
were collected in relatively quiet indoor environment with Android
phones or iPhones. The training set, named Accent160, for both
challenge tracks (introduced in Section 4) has 160 hours of speech
including 8 accents (20 hours/accent). Spanish and Canadian accents
are not included in the training set. The test set for track 1 includes
16 hours of data (2 hours for each accent) and the test set for track
2 has 20 hours of data including extra 4 hours of data from Spanish
and Canadian accents (as unseen accent data). Speech recordings
were provided in Microsoft wav format (16KHz, 16bit and mono)
with manual transcriptions.

Training speech data and the corresponding transcriptions were
first released to participants together with metadata, in which de-
tailed information about speakers and recording environment includ-
ing speaker gender, age, region, recording device and others are pro-
vided. In order to make a fair comparison with the provided baseline
experiments, we also release a speaker list for participants to divide
the CV set from the training set. The test set was released later to the
participants with only audio recordings.

4. TRACKS AND BASELINES

4.1. Track 1: English Accent Recognition

Track 1 aims to study the English accent recognition problem. The
rules are as follows. 1) Data used for accent classification training
is limited to the 160 hours Accent English data and 960 hours of
Librispeech [24] data, and data augmentation based on the above
data is permitted. 2) Multi-system fusion techniques are prohibited;
there is no other restriction to the model and training techniques. 3)
The final ranking is based on the recognition accuracy on the whole
test set and the accuracy for each accent is for reference only.

For baseline experiments, a self-attention (SA) based classifi-
cation network is realized using ESPnet2. A mean + std pooling
layer is applied after encoder to pool the output on T dimension.
Transformer-3L\6L\12L are different in the number of encoder lay-
ers. All of them are trained under the simple CE loss for 40 epochs.
Specaugment is applied to the input feature. As shown in Table 1,
with the use of the releasd data, 6\12 layers of SA encoder result in
over fitting. From the results on the CV set, we found that the accu-
racy of some accents varies a lot among different speakers. As there
are only a few speakers in the CV set, the absolute value above is not
statistically significant. However, it is worth noting that when we
use an SA encoder trained by an ASR downstream task to initialize
the encoder of the accent classification network, the accent recogni-
tion accuracy is significantly improved. Finally the total accuracy of
ASR-init-Transformer-12L is up to 76.1% on the CV set. The code
and configuration of the baseline can be found from our github3.

4.2. Track 2: Accented English ASR

Track 2 studies the robustness of ASR system on accented English
speech where the word error rate on the whole test set is used as
the evaluation metric. Test sets include accents beyond training data
in order to evaluate the generalization performance of the model.
Again, data usage is only limited to the released data and the lib-
rispeech data. All kinds of system combination methods includ-
ing ROVER are strictly prohibited. Language model training should
only use the transcripts of permitted speech training data. Data aug-
mentation should only be applied on the permitted speech data only.

We prepare ASR baseline systems for track 2 with both Kaldi4

and ESPnet toolkits. Several training strategies and decoding related
parameters are compared, and results are shown in the Table 1.

In all experiments, we use 71-dimensional mel-filterbank fea-
ture as the input of the acoustic model and frame length is 25 ms
with a 10 ms shift. In our baseline chain-model system, the acoustic
model consists of a single convolutional layer with the kernel of 3
to down-sample the input speech feature, 19 hidden layers of a 256-
dimensional TDNN and a 1280-dimensional fully connection layer
with ReLU activation function. A 3-gram language model trained

2 https://github.com/espnet/espnet
3 https://github.com/R1ckShi/AESRC2020
4 http://www.kaldi-asr.org/
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Table 2. Results and major techniques used in the top 8 submissions in track 1.
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Team Code Network Total Acc (%) 

S2 TDNN ✔ ✔   ✔ ✔  ✔ ✔ 83.63 

E2 Transformer         ✔ 72.39 

Z2 Jasper + Transformer        ✔ ✔ 69.63 

F Transformer ✔ ✔  ✔ ✔  ✔ ✔ ✔ 69.59 

Baseline 1d Self-Attention Encoder         ✔ 64.90 

D2 RESNET + CTC          62.17 

C TDNN-F ✔ ✔      ✔ ✔ 60.62 

V TDNN-LSTM-Attention ✔ ✔ ✔ ✔      56.67 

H Transformer ✔ ✔ ✔  ✔     50.39 

 

with the transcripts of the 160 hours of speech is used in the de-
coding graph compiling. As for the transformer baseline, ESPnet
joint CTC/Attention transformer which contains 12-layer encoder
and 6-layer decoder is used, and the dimension of attention and feed-
forward layer is set to 256 (4 heads) and 2048 respectively. The
whole network is trained for 50 epochs with warmup for the first
25,000 iterations. We mainly try three training strategies: 1) only
using Accent160; 2) using Accent160 with another 160 hours of se-
lected data from librispeech (Libri160); 3) using 960 hours of lib-
rispeech data (Libri960) to train a base model and then fine-tuning
the model using Accent160. Furthermore, we optimize the decod-
ing with RNN language model and CTC posterior probability. The
RNNLM is a 2-layer LSTM model trained using ESPnet on the tran-
scriptions associated with Accent160, and both RNNLM and CTC
are fused (weight=0.3 for both) with beam search scores. From the
baseline results, we find that the end-to-end models outperform the
hybrid chain models given the limited training data and fine-tuning
the librispeech base model with accented English data achieves the
best performance among the three training strategies. The whole
recipe and results of the baselines can be found from our github.

5. CHALLENGE RESULTS AND ANALYSIS

5.1. Track 1: English Accent Recognition

Finally 25 teams submitted their results to track 1 and the accuracy
on the test set and the major techniques used for the top 8 teams are
summarized in Table 3. The winner goes to team S2 using a TDNN
based classification network with phonetic posteriorgram (PPG) fea-
ture as input, and they use text-to-speech (TTS) to expand the train-
ing data [25]. The major techniques are summarized below.

5.1.1. Data augmentation

Since the size of the released training data is relatively small, most
teams have done a lot of work in data augmentation. For exam-
ple, noise augmentation and speed perturbation are generally used.
Speed augmentation can enhance the robustness of the model mod-
estly, while volume augmentation and reverberation simulation help
a little. Simulated room impulse response (RIR) is used to convo-
lution with the original speech to generate data with reverberation.

Moreover, several teams use random cutting and splicing to expand
the data. In detail, two pieces of audio with the same accent are ran-
domly selected from the training dataset, and then each piece is cut to
two splices and the splices from the two pieces are combined as new
samples. Specaugmentation is also very useful reported by many
teams. Pitch shift is also an effective data augmentation method re-
ported by team F. In addition to the above tricks, it is also worth to
notice that the winner team S2 used the provided data to train a TTS
system to synthesize a large number of training audio clips with the
corresponding accents, and the accuracy of accent recognition was
improved absolutely by 10%.

5.1.2. Training Strategy

As revealed in the baseline experiments, the training of accent classi-
fication is easy to be over fitted to the speakers as the biggest acous-
tic difference lies in the speaker characteristics, which leads to great
difference in the accuracy of different speakers with same accent.
Therefore, it is beneficial to use speaker-invariant feature input and
pre-trained encoder by speaker-invariant downstream task to initial-
ize the network. Team S2 used PPG features generated by a Kaldi
ASR system as model input. Team Z2 adopted a multi-task strategy
with both accent recognition and phoneme classification. The sec-
ond place team E2 used the accent label together with transcripts to
train a Transformer ASR model with accent classification ability at
the same time. As reported, putting the accent tag at the beginning of
text outperforms tagging at the end. Besides the mainstream neural
networks, team H used an NN and support vector machine (SVM)
combination method. An embedding layer was applied before the
fully-connected layer and SVM was used to classify the embedding
vector.

5.2. Track 2: Accented English ASR

Forty two teams submitted their results to track 2. Team Q2 obtained
the lowest average WER of 4.06%. This was achieved by a CTC
model with LAS rescoring while the CTC model was initialized by a
Wav2Vec encoder trained in an unsupervised manner using Fairseq
toolkit [26]. The superior performance indicates that unsupervised
training is promising in improving performance when labeled data is
limited. The results and major techniques used in the top 10 systems
are summarzied in Table 3.
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Table 3. Results and major techniques used in the top 10 submissions in track 2.
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Team Code Network Ave. WER(%) 

Q2 Wav2vec enc. + CTC + LAS ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  4.06 

S2 CTC + LAS ✔ ✔  ✔ ✔ ✔ ✔   ✔ 4.47 

E2 Transformer + CTC    ✔  ✔    ✔ 4.52 

A2 Conformer + CTC  ✔  ✔  ✔     4.71 

T2 Transformer + CTC  ✔  ✔  ✔  ✔  ✔ 4.72 

F Conformer + CTC  ✔  ✔  ✔    ✔ 4.95 

U2 Lite Transformer + CTC    ✔  ✔     5.33 

M3 BLSTM-CNN-TDNNF Hybrid ✔ ✔   ✔ ✔    ✔ 5.67 

D Conformer + CTC      ✔    ✔ 5.95 

M2 CNN-Multi-Stream-TDNNF-Attn  ✔ ✔ ✔ ✔ ✔    ✔ 6.23 

Baseline 2f Transformer + CTC      ✔     8.29 

 
5.2.1. Data augmentation

Similar to track 1, various data augmentation tricks were widely
adopted in the submitted system in track 2 and Table 3 shows the
tricks used in the top-performing systems. According to the system
descriptions provided by the teams, the relative WER reduction of
5% to 10% can be achieved by methods including volume augmen-
tation and speed perturbation. Noise and reverberation augmentation
was tried by several teams but no obvious gain was obtained. This
is probably because the acoustic and channel conditions between the
test set and the training set is similar.

5.2.2. Network Structure

A variety of different models were found to be used in track 2,
mainly including Transformer-based encoder-decoder models [27,
28, 29], CTC models with LAS [30] rescoreing and traditional hy-
brid models. Attention-based end-to-end models are able to take full
sentence-scale acoustic information into consideration, so they have
a natural advantage over the traditional hybrid models. Team Q2 fol-
lowed the work of wav2vec2.0 [31] and pre-trained a self-attention
encoder using both contrastive loss and diversity loss, in order to
obtain an encoder with waveform reconstruction capability and con-
textualized representation capability. The score of letter-level model
above was combined with a word-piece level Transformer LM. The
second place team S2 adopted frame-level CE loss pre-trained en-
coder [32] (labels are generated by a Kaldi triphone system), result-
ing in 5% WER reduction. Conformer and lite Transformer were
used by several teams which implies the potential room for improve-
ment of primitive Transformer, especially in enhancing the ability
of local information modeling. Explicit accent related optimizations
were rarely used in the submitted systems. But team T2 used ac-
cent recognition multi-task training encoder and yielded 3% relative
WER reduction.

5.2.3. Language Modeling

As for language modeling, it is obvious that NN language model
rescoring works well, and it brings improvement ranging from 7%
to 15% on the CV set, reported from the system descriptions. Two-
pass decoding was used by the top 2 teams. It is effective to rescore

the lattice generated by WFST (11.7% WER reduction by team S2)
or fusion the primitive posterior probability in the process of beam
search with LAS (26.4% WER reduction by Q2). Team Q2 specifi-
cally compared the performance of statistic language model and NN
language model. It turns out that a well-trained Transformer LM
can achieve a slightly lower perplexity, but the 4-gram model out-
performs the Transformer LM in WER (3.96% to 4.01%). Team Q2
also tried a method of combining two language models using differ-
ent granularity modeling units. A word-piece level Transformer LM
was applied in the decoding fusion, leading to 2.4% relative WER
reduction on the CV set (3.73% to 3.64%).

6. SUMMARY

According to the results of track 1, we found it necessary to fix the
over-fitting problem, which means to peel off the speaker-related in-
formation from the encoder output. Therefore, a pre-trained encoder
with ASR downstream task works well. The use of phonetic pos-
teriorgram (PPG) features as network input is also effective in ac-
cent recognition. In track 2, we have seen a variety of networks
including end-to-end models and traditional hybrid systems. In con-
clusion, CNN-based unsupervised training with contrastive loss and
diversity loss can enhance the ability of waveform reconstruction
and contextualized representation, leading to superior recognition
performance. Strengthening local information like Conformer and
Lite Transformer apparently leads to improved performance. As to
language modeling, CTC with LAS 2-pass decoding performs well,
which combines the time sequence modeling capability with CTC
loss and full sentence scale modeling ability from self-attention. A
few accent related modeling techniques are used in track 2, and most
participants choose to train an average model for all accents. With
limited training data, data augmentation tricks are essential for both
tracks.
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Tomi Kinnunen, and Chin-Hui Lee, “I-vector modeling of
speech attributes for automatic foreign accent recognition,”

6921

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:12:14 UTC from IEEE Xplore.  Restrictions apply. 



IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 24, no. 1, pp. 29–41, 2015.

[2] Yusnita Ma, M. P. Paulraj, Sazali Yaacob, A. B. Shahriman,
and Sathees Kumar Nataraj, “Speaker accent recognition
through statistical descriptors of mel-bands spectral energy and
neural network model,” 2012.

[3] Maryam Najafian and Martin Russell, “Automatic accent
identification as an analytical tool for accent robust automatic
speech recognition,” Speech Communication, vol. 122, pp. 44–
55, 2020.

[4] Pradeep Rangan, Sundeep Teki, and Hemant Misra, “Exploit-
ing spectral augmentation for code-switched spoken language
identification,” 2020.

[5] Nur Endah Safitri, Amalia Zahra, and Mirna Adriani, “Spo-
ken language identification with phonotactics methods on mi-
nangkabau, sundanese, and javanese languages,” Procedia
Computer Science, vol. 81, pp. 182–187, 2016.

[6] Chithra Madhu, Anu George, and Leena Mary, “Automatic
language identification for seven indian languages using higher
level features,” in IEEE International Conference on Signal
Processing, 2017.

[7] Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda, “At-
tentive statistics pooling for deep speaker embedding,” arXiv
preprint arXiv:1803.10963, 2018.

[8] Weidi Xie, Arsha Nagrani, Joon Son Chung, and Andrew Zis-
serman, “Utterance-level aggregation for speaker recognition
in the wild,” in ICASSP 2019. IEEE, pp. 5791–5795.

[9] Arsha Nagrani, Joon Son Chung, Weidi Xie, and Andrew Zis-
serman, “Voxceleb: Large-scale speaker verification in the
wild,” Computer Speech & Language, vol. 60, pp. 101027,
2020.

[10] Carlos Teixeira, Isabel Trancoso, and António Serralheiro,
“Accent identification,” in Proceeding of Fourth International
Conference on Spoken Language Processing. ICSLP’96. IEEE,
1996, vol. 3, pp. 1784–1787.

[11] Shamalee Deshpande, Sharat Chikkerur, and Venu Govin-
daraju, “Accent classification in speech,” in Fourth IEEE
Workshop on Automatic Identification Advanced Technologies
(AutoID’05). IEEE, 2005, pp. 139–143.

[12] Asad Ahmed, Pratham Tangri, Anirban Panda, Dhruv Ramani,
and Samarjit Karmakar, “Vfnet: A convolutional architecture
for accent classification,” in 2019 IEEE 16th India Council
International Conference (INDICON). IEEE, 2019, pp. 1–4.

[13] Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu, Zhao-
jiang Lin, Andrea Madotto, Peng Xu, and Pascale Fung,
“Learning fast adaptation on cross-accented speech recogni-
tion,” arXiv preprint arXiv:2003.01901, 2020.

[14] Zhong Meng, Hu Hu, Jinyu Li, Changliang Liu, Yan Huang,
Yifan Gong, and Chin-Hui Lee, “L-vector: Neural label em-
bedding for domain adaptation,” in ICASSP 2020. IEEE, 2020,
pp. 7389–7393.

[15] Thibault Viglino, Petr Motlicek, and Milos Cernak, “End-to-
end accented speech recognition.,” in INTERSPEECH, 2019,
pp. 2140–2144.

[16] Bo Li and Khe Chai Sim, “Comparison of discriminative input
and output transformations for speaker adaptation in the hybrid
nn/hmm systems,” in INTERSPEECH 2010.

[17] Han Zhu, Li Wang, Pengyuan Zhang, and Yonghong Yan,
“Multi-accent adaptation based on gate mechanism,” arXiv
preprint arXiv:2011.02774, 2020.

[18] Sining Sun, Ching-Feng Yeh, Mei-Yuh Hwang, Mari Osten-
dorf, and Lei Xie, “Domain adversarial training for accented
speech recognition,” CoRR, vol. abs/1806.02786, 2018.

[19] Yi Chen Chen, Zhaojun Yang, Ching Feng Yeh, Mahaveer
Jain, and Michael L. Seltzer, “Aipnet: Generative adversarial
pre-training of accent-invariant networks for end-to-end speech
recognition,” in ICASSP 2020, 2020.

[20] Sanghyun Yoo, Inchul Song, and Yoshua Bengio, “A highly
adaptive acoustic model for accurate multi-dialect speech
recognition,” in ICASSP 2019, 2019.

[21] M. Chen, Zhanlei Yang, Jizhong Liang, Yanpeng Li, and
Wenju Liu, “Improving deep neural networks based multi-
accent mandarin speech recognition using i-vectors and accent-
specific top layer,” in INTERSPEECH, 2015.

[22] Isin Demirsahin, Oddur Kjartansson, Alexander Gutkin, and
Clara Rivera, “Open-source Multi-speaker Corpora of the En-
glish Accents in the British Isles,” in Proceedings of The 12th
LREC, Marseille, France, May 2020, pp. 6532–6541, Euro-
pean Language Resources Association (ELRA).

[23] Ltd. Magic Data Technology Co., “Openslr68: Magicdata
mandarin chinese read speech corpus,” .

[24] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: an asr corpus based on public do-
main audio books,” in ICASSP 2015. IEEE, 2015, pp. 5206–
5210.

[25] Houjun Huang, Xu Xiang, Yexin Yang, Rao Ma, and Yanmin
Qian, “Aispeech-sjtu accent identification system for the ac-
cented english speech recognition challenge,” in Proc. ICASSP
2021. IEEE.

[26] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam
Gross, Nathan Ng, David Grangier, and Michael Auli, “fairseq:
A fast, extensible toolkit for sequence modeling,” in Proceed-
ings of NAACL-HLT 2019: Demonstrations, 2019.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin, “Attention is all you need,” in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[28] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, and Ruoming Pang, “Conformer:
Convolution-augmented transformer for speech recognition,”
2020.

[29] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han,
“Lite transformer with long-short range attention,” 2020.

[30] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,
“Listen, attend and spell: A neural network for large vocab-
ulary conversational speech recognition,” in ICASSP 2016.
IEEE, 2016, pp. 4960–4964.

[31] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and
Michael Auli, “wav2vec 2.0: A framework for self-supervised
learning of speech representations,” 2020.

[32] Tian Tan, Yizhou Lu, Rao Ma, Sen Zhu, Jiaqi Guo, and Yan-
min Qian, “Aispeech-sjtu asr system for the accented english
speech recognition challenge,” in Proc. ICASSP 2021. IEEE,
2021 (to appear).

6922

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:12:14 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-24T13:41:11-0400
	Preflight Ticket Signature




