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Abstract
The pooling function plays a vital role in the segment-level deep
speaker embedding learning framework. One common method
is to calculate the statistics of the temporal features, while
the mean based temporal average pooling (TAP) and temporal
statistics pooling (TSTP) which combine mean and standard de-
viation are two typical approaches. Empirically, researchers ob-
serve a big performance degradation in x-vector when removing
the standard deviation. Based on this observation, in this paper,
we designed a set of experiments to analyze the effectiveness of
different statistics quantitatively, including the investigation and
comparison on pooling functions based on standard deviation,
covariance and `p-norm. Experiments are carried out on Vox-
Celeb and SRE16, and the results show that the second-order
statistics based pooling functions yield better performance than
TAP, and only the simple standard deviation can achieve the
best performance on all the evaluation conditions.
Index Terms: speaker embedding, statistics pooling, speaker
recognition

1. Introduction
Deep speaker embeddings are currently the dominating ap-
proach for speaker identity modeling. Unlike shallow model
such as Gaussian mixture model (GMM) [1] or factor analysis
[2, 3], deep neural network (DNN) has shown incredible non-
linear modelling power for complex data distribution [4, 5, 6].
Accordingly, one of the hottest topics is to use DNN for repre-
sentation learning [7, 8], which aims to learn a highly compact
and informative embedding to represent the original input.

In the speaker recognition field, the d-vector paradigm was
the first well-known DNN based embedding learning frame-
work, which uses a speaker-discriminative DNN to extract
frame-level deep features and then average them to a single
speaker embedding. However, despite the powerful DNN front-
end, d-vector didn’t show better results than the conventional
i-vector system. As the following work, derived from the d-
vector [4] framework, the x-vector structure [9] incorporates a
statistics pooling layer to aggregate multiple frame-level deep
features to a segment-level representation along the temporal
axis, turning deep speaker embedding learning to a segment-
level optimization problem. The x-vector style systems exhibits
better performance on several popular datasets, including Vox-
Celeb [10, 11] and NIST SRE.

The success of x-vector comes in two folds, a more pow-
erful learning machine (TDNN) and the segment-level training.
Sharing the same idea, on the one hand, different architectures
such as ResNet [12], inception network [13, 14] are investigated
for the speaker embedding learning task. On the other hand,
such a segment-level optimization strategy has been proven to
be rather helpful for learning high-quality speaker embeddings

[9]. To enable segment-level optimization, one pooling layer
is needed to aggregate frame-level features to a single repre-
sentation. Different pooling functions have been investigated
in the literature, including the simple temporal average pooling
(TAP) [15], temporal statistics pooling (TSTP) [9] and com-
plicated pooling functions such as self-attentive pooling (SAP)
[16], vector of locally aggregated descriptors (VLAD) [17] and
learnable dictionary encoding (LDE) [18].

In this work, we will focus on the statistics based pooling
functions and give a quantitative analysis of the impact of dif-
ferent statistics. Although TAP is used a lot in the speaker em-
bedding learning task, especially for ResNet models [19, 20],
it’s always found helpful to use TSTP, which also considers the
standard-deviation [9, 21, 16]. However, there is no system-
atic comparison and analysis of the impact of different statistics
on the deep speaker embedding learning. We first derive the
temporal standard deviation pooling (TSDP), which only con-
siders the standard deviation of the input feature sequence, giv-
ing incredibly good results, which outperforms TAP and even
TSTP based models. Motivated by this observation, we exper-
imented with other high-order statistics such as covariance and
`p-norm. Experiments are carried on two datasets, VoxCeleb
[11] and NIST SRE 2016 [22] using two different backbones,
i.e., TDNN and ResNet, and the results show the superiority of
second-order statistics to the first-order mean and the incredible
effectiveness of the simple standard deviation for the speaker
embedding learning task.

2. Deep speaker embedding learning
A typical segment-level speaker embedding learning framework
is shown in Figure 1. After several frame-level feature learning
layers, a sequence of deep features would be aggregated into a
segment-level representation, which would be projected to the
speaker embedding by one or two segment-level affine layers.
The whole network is optimized against the softmax-CE loss,
aiming to discriminate the speakers in the training data.

In this work, we will focus on the simple statistics based
pooling functions and investigate the impact of different statis-
tics on the speaker embedding learning.

2.1. Temporal average pooling

For a given speech segment O, T frames of d-dimensional deep
features X = {x1, . . . ,xt, . . . ,xT } can be obtained from the
last frame-level layer, a pooling layer P is adopted to aggregate
X to a single representation z1. The temporal average pooling
(TAP) simply computes the mean vector of X along the time
axis as:

1Commonly, z is not the speaker embedding yet, and an affine layer
will be used to transform z to embedding e.
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Figure 1: Architecture of the typical deep speaker embedding
learning system

Ptap(X) =
1

T

T∑
t=1

xt (1)

2.2. Statistics pooling

In the x-vector framework, instead of the TAP which only uses
the first-order statistics µ, a second-order statistics σ is ap-
pended to the mean vector and constructs the pooling function
Ptstp as the concatenation of µ and σ, 2,

Ptstp(X) = [µ>,σ>]> (2)

where µ = 1
T

∑T
t=1 xt and σ =

√
1
T

∑T
t=1(xt − µ)2

3. Second-order statistics based pooling
3.1. Temporal standard deviation pooling

Although TSTP show better performance than TAP in the x-
vector framework, there is no systematic analysis how much the
standard deviation helps. To better analyze its effect, we derive
the temporal standard deviation pooling (TSDP) as

Ptsdp(X) = σ =

√√√√ 1

T

T∑
t=1

(xt − µ)2 (3)

3.2. Global covariance pooling

Covariance based pooling has been investigated a lot in the im-
age processing community [23, 24, 25]. Unlike the variance
based pooling, covariance considers the correlation of different
feature dimensions, yielding a more comprehensive description
of data.

Σ = XIXT (4)

where I = 1
T

(
I− 1

T
1
)
, I and 1 are the T × T identity ma-

trix and matrix of all ones. Instead of the original formula,
we adopted the normalized version, iSQRT-COV [26, 23, 24],
which applies iterative matrix square root normalization to
boost the performance.

Σ
1
2 = UΛ

1
2 UT (5)

2It should be noticed that the formulas are not strictly defined for the
vector based input, we use the notations just for simplicity

where U and Λ are the matrix of eigen-vectors and the diagonal
matrix of eigenvalues of Σ, respectively.

Then we define covariance based pooling (GCP) as

Pgcp = vech(Σ
1
2 ) (6)

where vech is the half vectorization which takes the upper
triangular part of a matrix and flatten it as a vector. Thus,
the final output vector of Pgcp has the size of d(d+1)

2
. More

details could be referred to the paper and the open-source
implementation[27].

3.3. `p-norm pooling

In our experiments, we observe an impressive performance im-
provement of TSDP, which is based on the second-order cen-
tral moment standard deviation, we wonder whether high-order
non-central moment such as power-averaging could also help.
Accordingly, the temporal `p -norm pooling 3 is also investi-
gated, which is stated as follows,

Ptlpp(X) =
1

T
p

√√√√ T∑
t=1

xp
t (7)

When p is set to 1, `p -norm equals to the mean operation
andPtlpp is the same asPtap. In this work, we mainly investigate
the usage of `2 -norm by setting p = 2.

4. Experiments
All the experiments are carried on two datasets: VoxCeleb and
NIST SRE. Except for the difference in the data used, the other
setups, such as feature preparing, neural network architectures
and optimization strategy, are shared across the two sets of ex-
periments. We will first describe the common experimental se-
tups in Sec. 4.1. The detailed description of training and eval-
uation data along with the result presentation will be given in
Sec. 4.2 and Sec. 4.3, respectively.

4.1. Experimental setups

4.1.1. Data preparation

The training data is cut to segments with random duration rang-
ing from 2−4s, following the Kaldi recipe[28, 29], however, we
didn’t use any data augmentation in most setups and used 40-
dimensional Fbank as the input features. An energy-based VAD
is applied to remove silent frames and all features are processed
with Cepstral Mean Normalization (CMN).

4.1.2. Model architecture

For experiments on both datasets, two different popular speaker
embedding front-ends are investigated: x-vector extracted from
the 1-D convolutional TDNN and r-vector from the 2-D convo-
lutional ResNet. The details are described as follows.

The TDNN structure is depicted in Table 1, which follows
the standard x-vector system described in [9] and used in the
Kaldi Recipe, except the pooling related layers changed accord-
ing to different aggregation functions. The x-vector is extracted
from the layer “segment1” in Table 1.

The ResNet architecture in [20] is used, which is shown in
Table 2. The 34-layer version is used in this work. The r-vector
is extracted from the layer “Dense” in Table 2.

3Also referred as power-average pooling in Pytorch, we add an ad-
ditional 1

T
to normalize the effect of utterance length
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Table 1: The TDNN based speaker embedding extractor. T de-
notes the sequence length, and N is the number of speakers.
[30]

Layer Layer context Input × output

frame1 [t− 2, t+ 2] 200 × 512
frame2 {t− 2, t, t+ 2} 1536 × 512
frame3 {t− 3, t, t+ 3} 1536 × 512
frame4 {t} 512 × 512
frame5 {t} 512 × 1500

stats pooling [0, T ] 1500 × Npool

segment1 {0} Npool × 512
segment2 {0} 512 × 512
projection {0} 512 × N

Table 2: The ResNet34 based speaker embedding extractor. T
denotes the sequence length, and N is the number of speakers.

Layer name Structure Output

Input – 40 × T × 1
Conv2D-1 3 × 3, Stride 1 40 × T × 32

ResNetBlock-1
[
3× 3, 32
3× 3, 32

]
× 3 , Stride 1 40× T × 32

ResNetBlock-2
[
3× 3, 64
3× 3, 64

]
× 4, Stride 2 20× T

2
× 64

ResNetBlock-3
[
3× 3, 128
3× 3, 128

]
× 6, Stride 2 10× T

4
× 128

ResNetBlock-4
[
3× 3, 256
3× 3, 256

]
× 3, Stride 2 5× T

8
× 256

StatsPooling & Flatten – Npool

Dense – 256
Projection – N

For both the TDNN and ResNet systems, the pooling re-
lated layers are customized to fit different statistics. Accord-
ingly, the width of the related layers can differ. Npool used in
TDNN and ResNet for different statistics are listed in Table 3.
For all the TLPP based systems, p is set to 2 and the `p-norm is
essentially `2-norm.

Table 3: Npool used in TDNN (Table 1) and ResNet (Table 2) for
different pooling functions

Pooling (Statistics) TDNN ResNet

TAP (mean) 1500 1280
TSDP (stddev) 1500 1280
TSTP (mean+stddev) 3000 2560
TLPP (`p-norm) 1500 1280
GCP (covariance)3 1275 1275

4.1.3. Neural network optimization

The optimization for all the models used in this work shares
the same setups, and SGD with 1e−4 momentum is used as the

3For GCP, a 1x1 convolution layer with BatchNorm and ReLU is
applied before pooling to avoid enormous Npool. To make the output
dimension comparable with other pooling functions, the number of out-
put channels is 50 for both TDNN and ResNet.

network optimizer. The learning rate is initially set to 0.1 and
gradually reduced to 1e−6 along with the training process. The
training is paralleled on 4 GPUs, with a batch-size 64 on each
GPU, resulting in a total batch-size of 256.

4.1.4. Evaluation metrics

We report the performance in terms of equal error rate (EER)
and minimum detection cost function (minDCF), where ptarget

is set to 0.01.

4.2. Experiments on VoxCeleb

4.2.1. Dataset

VoxCeleb was released by Oxford and has been one of the most
popular speaker recognition dataset. Two parts, VoxCeleb1 and
VoxCeleb2 were included. In this work, the DEV set of Vox-
Celeb2 is used as the training data, which contains 5994 speak-
ers and 1092009 utterances. The first part VoxCeleb1 is used as
the evaluation set, and all three official trial lists (cleaned ver-
sion) VoxCeleb O, VoxCeleb E and VoxCeleb H are used for
the evaluation.

4.2.2. Results

The results of VoxCeleb can be found in Table 4. As shown in
the first two rows of both TDNN and ResNet systems, append-
ing the standard deviation consistently outperform the original
mean based systems, which is consistent with the observations
in [16, 31]. All the second-order statistics based systems out-
perform the mean based systems, exhibiting the effectiveness of
high-order statistics. The best results are obtained by using only
the standard deviation, even exceeding the systems using TSTP,
a 1.56%, 1.78% and 3.07% EER on the three evaluation sets.
This observation shows that the simple concatenation might not
be a proper way to integrate the information encoded in mean
and standard deviation.

4.3. Experiments on SRE16

4.3.1. Dataset

The training set consists of two parts of data: SRE portion
and SWBD portion. The former contains data selected from
NIST SRE2004-2010 and the latter contains data selected from
Switchboard dataset. To enable faster experiments, compared
with other works[32], we adopted a more aggressive data fil-
tering strategy, the final training list includes 62949 recordings
from 3419 speakers. Systems are evaluated on the evaluation set
of SRE16, including the Cantonese and Tagalog subsets. The
unlabelled part of SRE16 is used for PLDA adaptation in the
scoring phase.

4.3.2. Results

Results on SRE16 are shown in Table 5, which also contains
both the TDNN and ResNet systems. Consistent with the Vox-
Celeb results in Table 4, the standard deviation pooling achieves
the best performance on both Cantonese and Tagalog, with both
TDNN and ResNet.

As shown in Table 4 and 5, TSDP achieves surprisingly
the best performance and consistently outperforms the normal
TSTP. Despite the good results on VoxCeleb, the performance
on SRE16 is still not comparable to the ones in the literature
[32, 33], where data augmentation is used to boost the sys-
tem performance. Thus the standard deviation pooling based
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Table 4: Results on Voxceleb Dataset using different statistics for pooling

Architecture Pooling Stats voxceleb1 O voxceleb1 E voxceleb1 H
EER minDCF EER minDCF EER minDCF

TDNN

mean 3.36 0.370 3.40 0.360 5.65 0.508
mean+stddev 2.53 0.263 2.71 0.299 4.56 0.420
`p-norm 2.50 0.313 2.69 0.296 4.54 0.435

cov 2.66 0.300 2.94 0.309 4.90 0.458
stddev 2.41 0.260 2.59 0.270 4.33 0.399

ResNet

mean 2.35 0.274 2.22 0.257 3.75 0.365
mean+stddev 1.94 0.219 1.89 0.235 3.24 0.323
`p-norm 1.81 0.232 1.85 0.219 3.15 0.314

cov 1.95 0.242 2.11 0.257 3.57 0.347
stddev 1.56 0.183 1.78 0.209 3.07 0.305

Table 5: Results on SRE 2016 evaluation set, with unsupervised
PLDA adaptation

Architecture Pooling Stats Cantonese Tagalog
EER minDCF EER minDCF

TDNN

mean 7.21 0.542 17.21 0.888
mean+stddev 5.81 0.469 15.34 0.830
`p-norm 5.86 0.479 15.51 0.904

cov 5.25 0.448 13.99 0.897
stddev 5.21 0.454 14.16 0.856

ResNet

mean 5.36 0.436 15.58 0.883
mean+stddev 4.26 0.371 12.91 0.845
`p-norm 4.72 0.398 14.17 0.885

cov 4.72 0.422 12.94 0.884
stddev 4.17 0.370 12.67 0.814

TDNN (Aug) mean+stddev 3.98 0.341 12.25 0.816
stddev 3.72 0.350 12.28 0.824

ResNet (Aug) mean+stddev 3.28 0.308 10.72 0.759
stddev 3.28 0.287 10.79 0.745

systems are also evaluated with Kaldi-style data augmentation,
which are more competitive and shown as the bottom rows in
Table 5. To give a more intuitive comparison between differ-
ent pooling functions, we draw the DET plot with the ResNet
results on SRE16 Cantonese, which is shown in Figure 2.

4.4. Investigation of Higher-order statistics

Besides the second-order statistics described above, we also in-
vestigated several types of higher-order statistics, although no
better results were obtained, we would like to briefly summa-
rize here.

1. For the `p-norm with p = 3 or p = 4, slightly worse
results were obtained compared to p=2

2. Higher-order deviation p

√
1
T

∑T
t=1(xt − µ)p with p =

3 or p = 4 also underperform the standard deviation
where p = 2.

3. The third-order skewness 1
T

∑T
t=1

(
xt−µ

σ

)3 and fourth-
order kurtosis 1

T

∑T
t=1

(
xt−µ

σ

)4 used in [32] achieved
even worse results than the simple first-order TAP.

5. Conclusion and future work
In this paper, we exhibit the impact of different statistics for
segment-level speaker embedding learning. Based on different
statistics such as mean, standard deviation, covariance and `p-

Figure 2: DET Plot for ResNet systems on SRE16 Cantonese

norm, different backbones such as TDNN and ResNet are eval-
uated and compared, and experiments are carried out on Vox-
Celeb and SRE16 datasets. Consistent performance improve-
ment is obtained using second-order statistics compared to the
temporal average pooling, while the best performance can be
achieved by the standard deviation based pooling.

It’s interesting and surprising to see the effectiveness of the
high order statistics, especially the standard deviation. Stan-
dard deviation describes the fluctuation of the data, whereas
conventionally, we believe the mean represents the informa-
tion which exists throughout the whole sequence, including the
speaker identity. According to the experiments in [25] on text-
dependent tasks, the variance-based aggregation also outper-
forms the mean based one in both d-vector and j-vector frame-
work. The observation implies that dynamic information en-
coded by standard deviation not only contains the phonetic in-
formation but also provides speaker-dependent information. In
future work, we will keep investigating on 1) a better strategy
to integrate different statistics 2) a more advanced way to utilize
the dynamic speaker identity information encoded in the speech
sequence and new feature investigation.
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