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Modified Magnitude-Phase Spectrum Information
for Spoofing Detection
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Abstract—Most of the existing feature representations for spoof-
ing countermeasures consider information either from the magni-
tude or phase spectrum. We hypothesize that both magnitude and
phase spectra can be beneficial for spoofing detection (SD) when
collectively used to capture the signal artifacts. In this work, we
propose a novel feature referred to as modified magnitude-phase
spectrum (MMPS) to capture both magnitude and phase informa-
tion from the speech signal. The constant-Q transform is used to
obtain the magnitude and phase information in terms of MMPS,
which can be denoted as CQT-MMPS. We then use this information
for the proposal of a handcrafted feature, namely, constant-Q mod-
ified octave coefficients (CQMOC). To evaluate the proposed CQT-
MMPS and CQMOC features, three classic anti-spoofing models
are adopted, including the Gaussian mixture model (GMM), the
light CNN (LCNN) and the ResNet. Additionally, since there is
usually no prior knowledge about the spoofing kind in real-world
applications, two novel methods referred to as three-class classifiers
with maximum spoofing-score (TCMS) and multi-task learning
(MTL) are designed for unknown-kind SD (UKSD). The exper-
imental results on ASVspoof 2019 corpus show that CQMOC
outperforms most of the commonly-used handcrafted features, and
the CQT-based MMPS performs better than the magnitude-phase
spectrum and the commonly-used log power spectrum. Further,
the MMPS-based systems can achieve comparable or even better
performance when compared with the state-of-the-art systems. We
find that the newly-designed TCMS and MTL methods outper-
form the combination-based method for UKSD and meanwhile,
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generalize much better than the respective-kind-based methods in
cross-spoofing-kind evaluation scenarios.

Index Terms—Constant-Q modified octave coefficients, modified
magnitude-phase spectrum, unknown-kind spoofing detection.

I. INTRODUCTION

AUTOMATIC speaker verification (ASV) aims to accept or
reject an identity claim with reference to a person’s voice

samples [1]–[4]. Although the research on ASV has witnessed
success for practical systems, they are vulnerable to various
spoofing attacks [5]. There are four broad categories of spoofing
attacks, which are replay [6]–[8], text-to-speech (TTS) [9]–[11],
voice conversion (VC) [12]–[14], and impersonation [15]. Due
to the lack of a standard database, impersonation attacks have
received less attention for spoofing detection research. In this
paper, we focus on the remaining three spoofing types.

Most of the spoofing detection (SD) frameworks have a
front-end feature extraction module followed by a module of
back-end classifier. Various works on SD either focus on in-
vestigating novel acoustic cues for front-end feature extrac-
tor [16]–[22] or emphasize on designing effective classifiers
and neural-network-based systems [23]–[26]. Literature shows
that most of the front-end modules for SD consider features
derived from the power spectrum. Some of these include mel
frequency cepstral coefficients (MFCC) [27]–[29], rectangu-
lar filter cepstral coefficients [30], inverted MFCC [31] (IM-
FCC), Gammatone filter bank cepstral coefficients (GFCC)
and inverted GFCC (IGFCC) [32]. Additionally, mel-warped
overlapped block transformation, inverted speech-based-signal
overlapped block transformation, speech-signal frequency cep-
stral coefficients and inverted speech-signal frequency cepstral
coefficients are also studied for SD [33]. Note that it has been
shown that cepstral features based on inverted filter banks can
perform better than the corresponding features based on filter
banks in synthetic speech detection [29], [32], for example,
IMFCC (IGFCC) outperforms MFCC (GFCC).

The features mentioned above are obtained using discrete
Fourier transform (DFT), which transforms the signal from the
time domain into the frequency domain. In contrast to this, a
novel feature based on constant-Q transform (CQT) referred to
as constant-Q cepstral coefficients (CQCC) is proposed in [19],
[20]. The CQT benefits the CQCC feature to have a better
time resolution in higher frequency regions, as well as a better
frequency resolution in lower frequency regions. Further, CQCC
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outperforms many commonly-used power spectrum based fea-
tures based on DFT [19], [20]. Inspired by the success of CQCC,
two novel subband features from the octave and liner subband
power spectrum are proposed in [34]. These studies showed that
subband features could significantly improve the performance
on SD.

Regarding the nature of information captured by the features,
it can be seen that they are derived from the magnitude spec-
trum. In [18], two magnitude-spectrum-based features, namely
log-magnitude spectrum and residual log-magnitude spectrum,
are investigated for synthetic speech detection. As the power
spectrum is the square of the magnitude spectrum, they can be
regarded under the same category with magnitude information.
Apart from such handcrafted features, many neural-network-
based anti-spoofing systems also use features with magnitude
information as the input. For instance, log power spectrum
(LPS) is used as the input to the neural networks [35]–[41].
Additionally, the power spectrum is also considered as the input
to deep Siamese networks previously [42].

Apart from the features derived from the magnitude spec-
trum, some features based on the phase information have also
been used for SD. Group delay, modified group delay [43],
modified group delay function (MODGDF) [44], instantaneous
phase [45], [46], linear prediction residual phase features [47],
instantaneous frequency derivative, baseband phase difference
and pitch synchronous phase [18] are mentioned to be a few
of them. Besides, cosine normalized phase (Cosphase) feature
[48] and all-pole group delay function (APGDF) [49] were
investigated for synthetic speech detection on the corpus of
ASVspoof 2015 [50] in [29]. Among which, APGDF usually
can give good performance because of its resemblance with
spectral characteristics [49]. These works signify the scope of
phase features for anti-spoofing.

Most of the works show that although the phase-based fea-
tures may not be as well discriminative as the magnitude-based
features, combining phase and magnitude information can help
to improve the performance of spoofing detection. For example,
in [40], the authors consider the phase and magnitude spectrum
together as input to the anti-spoofing model, which could en-
hance performance for replay attack detection. They contribute
this improvement to the complementary information contained
in the magnitude and phase spectrum. The magnitude and phase
spectrum are used together for many other speech processing
tasks as well. However, most of the combinations are performed
by developing separate systems for magnitude-based and phase-
based features and then combine at the score level [45], [46].

To the best of our knowledge, there are very few attempts to
extract features from both magnitude and phase spectra at the
same time because it is difficult to group magnitude and phase
information together. A few neural-network-based systems ap-
ply group delay gram [43] as the input of the networks [39],
[51]. Though group delay gram has both magnitude and phase
information, its phase information is obtained by time delay
operation, which is unlike the magnitude information directly
obtained from the transform such as DFT or CQT. As a result,
group delay gram is not widely used like LPS in front-end

feature extraction. This motivates us to find an effective way
to collectively capture magnitude and phase information.

In this paper, we investigate CQT based features for SD. We
believe that the magnitude and phase information derived from
the CQT can be more useful and effective if captured collectively.
Our previous work in [52] attempted to capture the magni-
tude and phase spectrum information collectively from CQT.
However, it resulted in representations of all positive values
due to consideration of magnitude over log magnitude-phase
spectrum. We hypothesize that our previous representation of
the magnitude-phase spectrum (MPS) can greatly benefit if we
preserve the sign of the magnitude part.

Motivated by this, we propose a novel way of capturing both
magnitude and phase information collectively that we refer to
as modified magnitude-phase spectrum (MMPS), which extends
our previous work on MPS [52]. The differences between MMPS
and MPS are as follows:
� MMPS is obtained by modifying MPS, which preserves the

sign of the magnitude part because magnitude information
could play a more important role than phase information
at most cases in SD.

� The values of MMPS can be either positive or negative,
while that of MPS are always positive.

We then use the MMPS obtained from CQT to derive a
novel handcrafted feature and apply them for SD. Specifically,
this handcrafted feature is derived by combining CQT-MMPS
and octave subband transform [34]. Therefore, we refer to it
as constant-Q modified octave coefficients (CQMOC). We will
formulate MMPS and CQMOC with detail in Section II.

Traditional SD is often modeled as a binary classification task.
Further, logical access (LA) and physical access (PA) attack
detection are regarded as two different tasks. The reason behind
this is that there is much difference between LA and PA attacks.
Specifically, LA attacks are derived logically using speech pro-
cessing methods that involve various TTS or VC algorithms and
vocoders, while PA attacks are just replayed versions of some
genuine examples, which differ from the genuine speech due to
device characteristics and recording environments. In this work,
we regard LA and PA attacks as two different kinds of spoofing
attacks. Since the spoofing kind is known in advance, traditional
SD can be regarded as known-kind SD (KKSD).

However, we usually have no prior knowledge about the
kind of spoofing attack in practice, which is different from
the previous ASVspoof challenge series where we have known
the spoofing kind in advance. In this paper, we term this task
as unknown-kind SD (UKSD). In order to solve this problem,
there is a requirement to assess the scope of generalized coun-
termeasure for UKSD [53] and design spoofing detectors that
can achieve promising performance for both spoofing attack
kinds [54]. In [53], we proposed a generalized countermeasure
for the UKSD by combining LA and PA as the spoofed class,
which can be named as the combination-based method. How-
ever, we found that the performance of the combined-based
method can not be satisfied because there is much difference
between LA and PA attacks, as mentioned above. Thus, we
believe that it would be better if anti-spoofing models can well
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discriminate between LA and PA attacks rather than simply
regarding them as a spoofed class.

To address the UKSD problem in real-world applications,
two methods referred to as three-class classifiers with maxi-
mum spoofing-score (TCMS) and multi-task learning (MTL)
for UKSD are proposed to improve neural-network-based anti-
spoofing models in this work, which extend our previous work on
the combination-based method [53]. Herein, the TCMS method
is also inspired by the work of multi-class classifiers used for
synthetic speech detection in [32]. The differences among the
combination-based method, TCMS and MTL are as follows:
� The combination-based method regards LA and PA attacks

as one class (spoofed class), while TCMS separates them
into two different classes. In addition, MTL has another
task to learn how to discriminate between them.

� TCMS applies a three-class output layer, including the
bonafide, replay, and synthetic nodes. Also, the maximum
spoofing-score strategy is adopted to compute the final
score for a test utterance.

� MTL retains the two-class output layer (bonafide or
spoofed) in the model, and further add a new branch with
two-class outputs (LA and PA attacks). In other words,
there are two two-class output layers in the MTL frame-
work. One is to predict whether a test utterance is spoofed
or not, and the other is to predict the spoofing kind for a
spoofing attack.

To evaluate the proposed MMPS and CQMOC features for SD
as well as the proposed TCMS and MTL methods for UKSD, we
conduct all experiments on the recent ASVspoof 2019 corpus
that includes both LA and PA attacks.

The contributions of this work can be summarized as below:
� Proposal of a novel feature, namely MMPS, to jointly

capture magnitude and phase information for SD
� The use of CQT-MMPS to derive a novel handcrafted

feature CQMOC that captures both magnitude and phase
information

� Proposal of TCMS and MTL for UKSD
The remainder of this paper is organized as follows. Firstly,

Section II introduces the proposed MMPS feature, based on
which we propose a handcrafted feature CQMOC. Then Sec-
tion III introduces the commonly-used anti-spoofing models for
KKSD as well as our proposed TCMS and MTL methods for
UKSD. Afterwards, Section IV and V evaluate the performance
of KKSD and UKSD, respectively. Finally, this work is summa-
rized and concluded in Section VI.

II. MODIFIED MAGNITUDE-PHASE SPECTRUM

In this section, we present the details of extracting MMPS.
Afterwards, we propose a novel handcrafted feature CQMOC
based on CQT-MMPS.

A. Modified Magnitude-Phase Spectrum

For a given audio signal x(n), its corresponding frequency
domain signal can be obtained by using CQT or DFT, which

can be written as:

X(ω) = |X(ω)|ejφ(ω) (1)

where |X(ω)| and φ(ω) represent the magnitude spectrum and
phase spectrum of x(n), respectively. Herein, φ(ω) can be ob-
tained by computing the arctangent of imaginary part ofX(ω) to
real part ofX(ω) ratio. The values ofφ(ω) are wrapped between
-π and π, thus φ(ω) can be regarded as a wrapped phase.

Then we can obtain Eq. (1) in log-scale with base-e:

ln(X(ω)) = ln(|X(ω)|ejφ(ω))

= ln(|X(ω)|) + jφ(ω) ln(e)

= ln(|X(ω)|) + jφ(ω) (2)

where ln |X(ω)| denotes the log magnitude spectrum (LMS)
with base-e.

The module of Eq. (2) is as follows:

|ln(X(ω))| = |ln |X(ω)|+ jφ(ω)|
=

√
(ln(|X(ω)|))2 + φ(ω)2 (3)

where |ln(X(ω))| represents the MPS of x(n), i.e., MPS(x(n)).
We also can write it as:

MPS(x(n)) =
√
(ln(|X(ω)|))2 + φ(ω)2 (4)

From Eq. (4), it can be seen that MPS(x(n)) contains two
parts: the magnitude part (ln(|X(ω)|)) and the phase part (φ(ω)).
Considering the fact that magnitude information could play a
more important role than phase information at most cases in
SD, we modify MPS by preserving the sign of the magnitude
part (i.e., ln(|X(ω)|)) to obtain MMPS. Further, for x(n), its
MMPS can be formulated as:

MMPS(x(n)) = sgn(ln(|X(ω)|))
√

(ln(|X(ω)|))2 + φ(ω)2

(5)
where sgn(·) represents the sign function.

B. Constant-Q Modified Octave Coefficients

We propose a novel handcrafted feature CQMOC using
MMPS derived from CQT (i.e., CQT-MMPS). Fig. 1 illustrates
the diagram of CQMOC extraction. As observed from Fig. 1,
firstly, CQT is applied to the speech signal, and then the proposed
MMPS is derived to capture the magnitude-phase information.
As MMPS is obtained from CQT, its frequency bin characteris-
tics resemble an octave scale. In other words, every frequency
bin has different bandwidth, and the former octave bandwidth
is one half of the latter octave bandwidth. Accordingly, we use
the octave subband transform (OST) [34] that considers octave
scale based subbanding followed by discrete cosine transform
(DCT) on it. We note that our previous work on OST [34] showed
improved results while considering such subband-based features
over the full frequency band features for SD. Therefore, we apply
the same strategy (OST) into the subbands of the proposed CQT-
MMPS to derive more spoofing relevant information for SD.

In OST, the octave subbanding is used to segment the full band
into subbands of octave 1, octave 2, . . . , octave V (V represents
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Fig. 1. Schematic diagram of constant-Q modified octave coefficients (CQMOC) extraction.

the number of octaves). DCT is then used to extract every octave
subband spectral principal information. Afterwards, the top P
coefficients of the DCT result are selected to form the final
feature.

According the definition of CQT in [55], we can obtain the
CQT for x(n), denoted as Y (k, n). Considering MMPSY as
the MMPS of Y (k, n), we now explain the steps to derive the
corresponding CQMOC feature CQMOCY in detail.

First,MMPSY is segmented into octave subbands according
to the octave scale, which is as follows:

MMPSY =

{
MMPSY1

,MMPSY2
, . . . ,MMPSYV

}

(6)
where MMPSY1

, MMPSY2
, . . . , MMPSYV

are the 1-st, 2-
nd, . . . , V -th octave subband of MMPSY , respectively.

Then, DCT is applied on MMPSY1
, MMPSY2

, . . . ,
MMPSYV

, respectively, which is as follows:

F1(p) =

B−1∑
k=0

MMPSY1
cos

{
(k + 1

2 )pπ

B

}
(7)

F2(p) =

2B−1∑
k=B

MMPSY2
cos

{
(k + 1

2 )pπ

B

}
(8)

. . . . . . . . .

FV (p) =

K−1∑
k=(V −1)×B

MMPSYV
cos

{
(k + 1

2 )pπ

B

}
(9)

where F1(p), F2(p), . . . , and FV (p) are the DCT results on
the 1-st, 2-nd, . . . , and V -th octave subband, respectively. In
addition, p can be chosen from 0, 1, 2, . . . , P -1.

Finally, as shown in Eq. (10), CQMOCY can be obtained
by concatenating F1(p), . . . , FV (p), and p is ranging from 0 to
P -1.

CQMOCY ={
F1(0), . . . , F1(P -1), . . . . . . . . . , FV (0), . . . , FV (P -1)

}
(10)

Note that if the module of MMPS in Fig. 1 is replaced by LPS,
the obtained feature is constant-Q transform octave subband
transform (CQ-OST) [34].

III. ANTI-SPOOFING MODELS FOR KKSD AND UKSD

In this section, we first introduce the back-end anti-spoofing
models that are used to evaluate our proposed CQT-MMPS and
CQMOC for KKSD. Herein, KKSD contains synthetic as well as
replay speech detection. Afterwards, we will elaborate on con-
sidered neural-network-based models for UKSD. Specifically,
we propose the TCMS and MTL methods for UKSD.

A. Anti-Spoofing Models for KKSD

In this work, we adopt three classic anti-spoofing models to
evaluate our proposed methods. One is the frame-level Gaus-
sian mixture model (GMM), the others are the utterance-level
models: the light CNN (LCNN) and the ResNet.

1) GMM: GMM is widely used as the back-end classifier for
SD [17], [19], [29], [56]. Meanwhile, the GMM-based systems
are also the official baseline systems in the ASVspoof challenge
series. Hence, we consider it for the study of the proposed
handcrafted feature CQMOC in this work. We refer to GMM
as a frame-level model because it is trained using speech frames
instead of speech segments or utterances.

Given two GMMs trained on bonafide and spoofed speech
examples, respectively, denoted as λb and λs, we can obtain the
score prediction of an input feature CQMOCY based on their
log-likelihood ratios:

Score(CQMOCY |λb, λs) =

log(CQMOCY |λb)− log(CQMOCY |λs) (11)

2) LCNN: The (9-layer) LCNN was the best system in
ASVspoof 2017 [35], where a Max-Feature-Map (MFM) ac-
tivation is used after each convolution (Conv) operation. It
also performed well in ASVspoof 2019 [36], [37]. The MFM
activation function is defined as:

ŷkij = max(ykij , y
k+F

2
ij ) (12)

where y is the input tensor of size F ×H ×W and ŷkij is the
output tensor of size F

2 ×H ×W . In addition, i and j represent
the indices in time domain and frequency domain, respectively,
and k is the filter index ranging from [1, . . . , F

2 ].
To further enhance modelling capability of LCNN, we adopt

the 29-layer structure in this work. The details of the 29-layer
LCNN architecture are described in Table I. Similar to our
previous work [57], we apply global average pooling (GAP)
in the time dimension after all convolution operations, making
this model apply to various lengths of input features. Besides,
since the ceiling mode is used in all max-pooling layers, it can
be applied to very short utterances with less than 16 frames.
All modules before MFM_FC1 are defined as the feature
extractor that learns deep spoofing embeddings. In addition, the
fully-connected (FC) FC2 and FC3 layers compose the spoofing
detector that maps the embeddings into spoofing labels (bonafide
or spoofed). To avoid over-fitting, we use dropout layers with a
0.5 ratio in both FC2 and FC3 layers.

After training the LCNN model, we can compute the score
of a test utterance, which is the difference between the bonafide
node and the spoofed node. For example, if the input feature is
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TABLE I
THE ARCHITECTURE OF LCNN29 MODEL

MMPSY , the formulation is as follows:

Score(MMPSY |LCNN)

= log

(
ST2(O1(MMPSY |LCNN))

)

− log

(
ST2(O2(MMPSY |LCNN))

)
(13)

where O1(MMPSY |LCNN) and O2(MMPSY |LCNN) rep-
resent the first output (bonafide node) and the second output
(spoofed node) from the trained LCNN for MMPSY , respec-
tively. ST2(·) represents the softmax transform for two-class
outputs.

3) ResNet: The ResNet variations used in ASVspoof 2019
achieved great performance in both PA and LA subtasks [37],
[39], [58]–[60]. In this work, we implement the ResNet ar-
chitecture following the standard one as depicted in [61]. In
other words, the overall model structure of ResNet (e.g., the
residual block) is almost the same as that in [61]. Specifically,
we adopt the ResNet18 model consisting of 8 residual blocks
{2, 2, 2, 2}, which is shown in Table II with details. Due to the
use of an average pooling layer, the ResNet model can also

TABLE II
THE ARCHITECTURE OF RESNET18 MODEL. ALL FILTER SIZES ARE

SET AS 3 × 3

apply to various lengths of input features. Here, we define all
modules before the FC1 layer as the feature extractor. Similarly,
the spoofing detector only consists of the FC2 and FC3 layers,
where dropout layers are also used.

Similarly, to score a test utterance using a trained ResNet
model, we follow the same strategy as the LCNN model, as
shown in Eq. (13).

B. TCMS and MTL for UKSD

Although anti-spoofing models are proposed for KKSD with
promising performance, such as the LCNN and ResNet models
mentioned above, they generalize poorly when it comes to
cross-spoofing-kind SD. In real-world applications, however, we
have no prior knowledge about the kind of spoofing attack for a
test utterance. As a result, traditional anti-spoofing systems (with
a binary output) for only replay speech detection or synthetic
speech detection above-mentioned can not meet the require-
ments to detect real-world spoofing attacks with both kinds.
To solve the UKSD problem, we investigate two methods to
improve the neural-network-based anti-spoofing models, named
as TCMS and MTL, respectively. Our ultimate goal is to make
anti-spoofing models discriminative between PA and LA attacks
instead of simply regarding them as a same spoofed class. We
believe this would further improve the performance for UKSD,
compared with the combination-based method in [53].

1) TCMS: A straightforward idea for UKSD is to adapt the
model into a three-class fashion (i.e., bonafide, replay, or syn-
thetic speech). By preparing bonafide speech examples as well
as PA and LA attacks for training, we can expect the three-class
model to discriminate well among them. We hypothesize that for
a well-trained three-class anti-spoofing model, the probability
with respect to replay speech is probably greater than that
of synthetic speech for a replay attack. In the same way, the
probability with respect to synthetic speech is probably greater
than replay speech for a synthetic speech. Therefore, we can
induce that the maximum between the probability of replay and
synthetic speech is the spoofed probability.

On the basis of the analysis mentioned above, we propose
a new method referred to as three-class classifiers with max-
imum spoofing-score (TCMS) for UKSD. Similarly, we take
the MMPSY feature and the LCNN model as an example
to formulate the maximum spoofing-score method, which is as
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follows:

Score(MMPSY |LCNN3)

= log

(
ST3(O1(MMPSY |LCNN3))

)

− log

{
Max

(
ST3(O2(MMPSY |LCNN3)),

ST3(O3(MMPSY |LCNN3))

)}
(14)

where O1(MMPSY |LCNN3), O2(MMPSY |LCNN3) and
O3(MMPSY |LCNN3) represent the first output (bonafide
node), the second output (replay node) and the third output
(synthetic node) of the trained three-class LCNN (denoted as
LCNN3) for MMPSY , respectively. In addition, ST3(·) rep-
resents the softmax transform for three-class outputs. Max(·)
denotes the maximum operation, which can be regarded as a
score normalization operation.

Similar to the LCNN model, we can easily obtain the ResNet-
based framework for TCMS.

2) MTL: Another approach we propose in this work is the
multi-task learning (MTL) framework. Specifically, we retain
the two-class output layer (bonafide or spoofed) in the model. In
addition, another branch is connected after the feature extractor,
which maps the embeddings into spoofing-kind labels (PA or
LA).

In this work, we investigate the MTL framework for both
LCNN and ResNet models. The new branch is implemented as
a duplicate copy of the spoofing detector, which is composed
of the FC2 and F3 layers, as shown in Table I and Table II.
We term this new branch as the spoofing-kind discriminator
in this paper. The training data for the MTL framework also
consist of bonafide data, LA attacks and PA attacks. For LA
and PA attacks, we train the whole network, including the
feature extractor, the spoofing detector, and the spoofing-kind
discriminator. However, for bonafide data, the spoofing-kind
discriminator is fixed and we only train the remaining parts. In
the testing stage, we only use the output of the spoofing detector
to compute the final score, following the same strategy in KKSD,
as shown in Eq. (13).

Although SD is still modeled as a binary classification task in
the MTL framework, it acquires the capability of distinguishing
well between LA and PA attacks, benefitting from the spoofing-
kind discriminator. We believe this would enhance performance
for UKSD in real applications.

IV. KKSD PERFORMANCE

In this section, we evaluate the proposed CQT-MMPS and
CQMOC features on ASVspoof 2019 corpus for KKSD. Specif-
ically, the ASVspoof 2019 LA portion is used for synthetic
speech detection, while the ASVspoof 2019 PA portion is used
for replay speech detection. We introduce the database and eval-
uation metric, as well as the experimental setup. Afterwards, the
experimental results and analysis of synthetic speech detection
and replay speech detection are presented, respectively.

TABLE III
SUMMARY OF THE ASVSPOOF 2019 CORPUS, WHICH INCLUDES THE

ASVSPOOF 2019 LA PORTION AND THE ASVSPOOF 2019 PA PORTION

A. Database and Evaluation Metric

The ASVspoof 2019 database was released for the ASVspoof
2019 challenge [62], which is summarized in Table III. Both
ASVspoof 2019 LA and ASVspoof 2019 PA portions contain
three subsets: training (Train), development (Dev), and eval-
uation (Eval) set. They have the same number of speakers,
respectively. However, it is observed that the data amount of the
ASVspoof 2019 PA portion is larger than that of the ASVspoof
2019 LA portion. The spoofed data in the ASVspoof 2019
LA portion are generated using either text-to-speech synthesis
or voice conversion algorithms, while the spoofed data in the
ASVspoof 2019 PA portion are collected using a far more
controlled simulation of replay spoofing attacks [62].

According to the ASVspoof 2019 evaluation plan, the tan-
dem detection cost function (t-DCF) [63] and equal error rate
(EER) are used as the primary and secondary evaluation metric,
respectively. The EER is calculated using the scores from the
countermeasure only, while t-DCF jointly considers the scores
from the ASV system and the countermeasure to measure the
final performance. Additionally, in the ASVspoof 2019 chal-
lenge, the ASV system is given and the ASV scores are fixed for
fair comparison among all countermeasures from participators.
In the same way, we use the ASV scores provided by the
ASVspoof 2019 organizers to compute the t-DCF metrics in
our experiments.

B. Experimental Setup

As mentioned in Section III-A, three classic anti-spoofing
models are used in our systems: GMM, LCNN and ResNet. We
will introduce how we set the hyper-parameters for the CQT-
MMPS and CQMOC features, as well as the training procedure
for these models.

1) GMM: For the GMM model, the parameters in CQT are
set according to the work of [19]. For instance, the octave number
V is set as 9, and the frequency bin number in each octave B
is set as 96. As a result, the static dimension of CQT-MMPS
is 863. In case of OST for CQMOC extraction, we follow the
same parameters as our previous work [34], where P is set as
12. Thus the static dimension of CQMOC is 9 × 12 = 108. We
further consider its delta and delta-delta coefficients, so the final
feature dimension is 108 × 3 = 324.

In the experiments, we train two GMMs of 512 mixture
components using bonafide and spoofed training samples,
respectively, following the ASVspoof 2019 baseline system
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TABLE IV
PERFORMANCE IN T-DCF AND EER (%) FOR THE PROPOSED CQT-MMPS AND

CQMOC FEATURES ON ASVSPOOF 2019 LA CORPUS

specifications [51], [62]. Additionally, we find that GMMs with
512 mixtures can achieve considerable performance on both
ASVspoof 2019 LA and PA development sets. In this work, voice
activity detection (VAD) is not applied for data pre-processing
because the nonspeech and boundary regions could contain
discriminative features and distortions for SD, as illustrated
in [36].

2) LCNN and ResNet: For the neural-network-based models,
the parameters in CQT are set according to our previous work
of [37]. For example, V and B are set as 7 and 12, respectively.
As a result, the static dimension of CQT-MMPS is 84. Further,
to extract the handcrafted CQMOC feature, we set P as 8. Thus
the final dimension of CQMOC is 7 × 8 = 56.

Since utterance lengths differ, we pad all utterances to the
maximum length by repeating their features within every batch,
which enables them to be processed in parallel during the
training process. Thus, the sizes of the input feature maps are
T × 84 for the 84-dimensional CQT-MMPS and T × 56 for
the 56-dimensional CQMOC, respective, where T denotes the
varying feature lengths among batches. The batch size is set
as 8 in the training stage. However, during the testing stage,
we forward the input utterance one by one. In other words,
the batch size is 1 and no padding is conducted in the testing
stage. Therefore, regardless of the GPU memory limitation, both
LCNN and ResNet models can be applied to test utterances with
too large or short durations.

In this work, we implement both LCNN and ResNet mod-
els in PyTorch and initialize all network weights by Xavier
method [64]. Further, cross-entropy loss is adopted as the loss
criterion, and SGD optimizer with a momentum of 0.9 and
a learning rate of 0.0001 is used during the training process.
Similarly, VAD is not used here.

C. Synthetic Speech Detection

In this subsection, the proposed CQT-MMPS and CQMOC
features are evaluated on ASVspoof 2019 LA portion for syn-
thetic speech detection. We present the results and analysis as
well as describe the related studies.

1) Results and Analysis: As discussed above, we use three
models to evaluate the proposed features, including the frame-
level model (GMM) and the utterance-level models (LCNN
and ResNet). We note that GMM is not used for CQT-MMPS
because it is of too high dimension (863). In this work, GMM is
mainly used to evaluate the performance of handcrafted features.
Table IV shows the experimental results on ASVspoof 2019 LA
corpus. From Table IV, several conclusions can be obtained:

TABLE V
PERFORMANCE COMPARISON AMONG THE LPS-, MPS, AND MMPS-BASED

FEATURES IN T-DCF AND EER (%) ON ASVSPOOF 2019 LA EVALUATION SET

� These five systems achieve better performance on the
development set than on the evaluation set consistently.
The probable reason may be due to the fact that the
same spoofing algorithms are shared in the training and
development sets, while some variants and new spoofing
algorithms are added into the evaluation set for ASVspoof
2019 LA portion.

� Considering three CQMOC-based systems, we observe
that ResNet outperforms GMM on both development and
evaluation sets, while LCNN performs worse than GMM
on the evaluation set. This may be due to the large param-
eter size of the 29-layer LCNN model as well as the small
training size of the ASVspoof 2019 LA corpus (25 380
samples in total).

� It can be seen that the (CQT-MMPS)-based systems sig-
nificantly outperform the CQMOC-based systems, what-
ever LCNN or ResNet is used as the back-end model.
The reason behind this is that the handcrafted CQMOC
is extracted from CQT-MMPS, which could lose some
spoofing-discriminative information and further cause per-
formance degradation in SD.

� It can be found that the (CQT-MMPS)-ResNet system
performs the best on both development and evaluation sets
among all five systems. This reveals the high generaliz-
ability of the (CQT-MMPS)-ResNet system for synthetic
speech detection.

2) Comparison With LPS and MPS: We now compare our
proposed MMPS with LPS and MPS derived from CQT. The
LPS is a commonly-used feature for SD, while MPS is proposed
for replay spoofing detection in our previous work [52]. Herein,
CQMOC and CQ-OST are derived from CQT-MMPS and CQT-
LPS, respectively. Table V shows the experimental results on
ASVspoof 2019 LA evaluation set. The utterance-level models,
LCNN and ResNet, are used to evaluate the performance of
the spectrum features (i.e., CQT-LPS, CQT-MPS, and CQT-
MMPS). It is observed that CQT-MPS can obtain comparable
performance with CQT-LPS, while CQT-MMPS outperforms
both of them consistently in terms of t-DCF and EER. Firstly, this
extends our previous work [52] and shows the effectiveness of
MPS for synthetic spoofing detection. In addition, it verifies the
effectiveness of MMPS by preserving the sign of the magnitude
part based on MPS. By collectively capturing the magnitude
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TABLE VI
PERFORMANCE COMPARISON IN T-DCF AND EER (%) WITH SOME

COMMONLY-USED FEATURES ON ASVSPOOF 2019 LA EVALUATION SET

TABLE VII
PERFORMANCE COMPARISON IN T-DCF AND EER (%) AMONG THE PROPOSED

SYSTEMS AND SOME KNOWN SYSTEMS ON ASVSPOOF 2019 LA
EVALUATION SET

and phase information, the MMPS-based systems can capture
more artifacts and further perform better for synthetic speech
detection.

Considering the handcrafted features, CQ-OST and CQMOC,
we observe that they can achieve comparable performance
on synthetic speech detection. Specifically, CQ-OST slightly
outperforms CQMOC on GMM, while CQMOC outperforms
CQ-OST marginally on both LCNN and ResNet. These results
reveal that for these well-handcrafted features, the back-end
models could play a less important role in detecting synthetic
attacks.

3) Comparison With Other Commonly-Used Features: Ta-
ble VI shows the comparison among our proposed CQMOC
feature and some other commonly-used handcrafted features,
such as MFCC, linear frequency cepstral coefficient (LFCC),
instantaneous frequency cepstral coefficients (IFCC) [65],
CQCC, constant-Q statistics-plus-principal information coef-
ficients (CQSPIC) [66], CosPhase, APGDF, and MODGDF.
GMM is adopted as the back-end model to evaluate the per-
formance of these handcrafted features. From Table VI, it can
be seen that our proposed feature CQMOC outperforms most
of the commonly-used features except APGDF. This shows the
effectiveness of the MMPS-based CQMOC feature to capture
both magnitude and phase information for synthetic speech
detection.

4) Comparison With Some Known Systems: Table VII com-
pares our proposed systems with some known systems on
ASVspoof 2019 LA evaluation set. The ZTWCC-GMM stands
for zero time windowing cepstral coefficients with a GMM
classifier [56], while FFT-LCNN represents the LCNN-based

TABLE VIII
PERFORMANCE IN T-DCF AND EER (%) FOR THE PROPOSED CQT-MMPS AND

CQMOC FEATURES ON ASVSPOOF 2019 PA CORPUS

neural network system with fast Fourier transform (FFT) as
the input [36]. Accordingly, LFCC-LCNN and (LFCC-CMVN)-
LCNN represent the LCNN-based neural network systems us-
ing LFCC and LFCC with the cepstral mean and variance
normalization (CMVN) as the input, respectively. Similarly,
MFCC-ResNet, Spec-ResNet, and CQCC-ResNet represent the
ResNet-based neural network systems with MFCC, DFT-based
LPS, and CQCC as the inputs, respectively [38]. The results
of these various existing systems are cited from the respective
published works.

It is observed that our systems achieve comparable or better
performance with the previous works. These show that the
magnitude-phase information captured by our proposed MMPS
and CQMOC features can help anti-spoofing systems to achieve
better results. It should be noted that FFT-LCNN and LFCC-
LCNN perform the best and the second best among all single
systems on ASVSpoof 2019 LA sub-challenge. Although our
proposed (CQT-MMPS)-ResNet performs slightly worse than
FFT-LCNN and LFCC-LCNN in terms of t-DCF, it performs
better in terms of EER. The reason behind this may be that the
ASV scores are computed by the x-vector ASV model using
magnitude-based features such as MFCCs and filterbanks [62],
[67]. In other words, the front-end feature could be more similar
and compatible in FFT-LCNN and LFCC-LCNN than in (CQT-
MMPS)-ResNet, compared with that in the x-vector ASV model.
If SD is viewed as a stand-alone task, the (CQT-MMPS)-ResNet
system is shown to perform the best (3.72% in EER), with
significant improvements compared with the other systems in
Table VII. Therefore, considering both t-DCF and EER metrics,
we can say that the proposed (CQT-MMPS)-ResNet system
achieves comparable results with state-of-the-art systems on
ASVspoof 2019 LA evaluation set.

D. Replay Speech Detection

We now focus on the studies on replay speech detection using
ASVspoof 2019 PA portion. Experimental results and analysis
of our proposed systems are given along with their comparison
to some existing systems.

1) Results and Analysis: Table VIII presents the results on
ASVspoof 2019 PA corpus. The GMM, LCNN, and ResNet
models are used here to evaluate our proposed features. We note
that the GMM is not used for the high-dimensional CQT-MMPS
feature. From Table VIII, some observations can be found:
� The performance on the development set is better than that

on the evaluation set for all five systems. The reason behind
this is that both bonafide and replay data in both training
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and development sets are generated using the same set
of randomly-selected acoustic and replay configurations.
In contrast, the evaluation set has different or unknown
acoustic and replay configurations that are far more diverse
and challenging.

� Considering the CQMOC-based systems, we can observe
that both LCNN and ResNet significantly outperform
GMM, which is different from the phenomenon on syn-
thetic speech detection, as discussed in Section IV-C1. Our
explanation behind this is that the larger training size of the
ASVspoof 2019 PA corpus (54 000 samples in total) can
help to train the large-size LCNN and ResNet models better
and avoid over-fitting, thus improving the generalization
performance.

� Similarly, the (CQT-MMPS)-based systems outperform
the CQMOC-based systems consistently, whatever LCNN
or ResNet is used. This is also owing to the information lost
in the process of extracting CQMOC from CQT-MMPS.

� It can be found that the (CQT-MMPS)-LCNN system
shows the best performance on ASVspoof 2019 PA evalua-
tion set (0.024 in t-DCF and 0.90% in EER) among all five
systems, and (CQT-MMPS)-ResNet performs the second-
best and comparable result (0.031 in t-DCF and 1.08%
in EER). This reveals the strong modelling capability of
the neural-network-based models (LCNN and ResNet) to
capture the artifacts for replay speech detection.

Comparing the results between synthetic speech detection
(Table IV) and replay speech detection (Table VIII), it can be
found the performance of replay speech detection on ASVspoof
2019 PA corpus is much better than that of synthetic speech
detection on ASVspoof 2019 LA corpus, which is consistent
with the results in the ASVspoof 2019 challenge. One reason
is that the ASVspoof 2019 PA corpus is a simulated replay
dataset, while the ASVspoof 2019 LA corpus is a synthetic
speech dataset. The variance in simulated data is less than that in
synthetic data generated by various algorithms. Another reason
is that the training size of the ASVspoof 2019 LA corpus (25 380
samples in total) is much smaller than that of the ASVspoof 2019
PA corpus (54 000 samples in total). The data-driven large-size
neural-network-based models (LCNN and ResNet) can benefit
a lot from a larger training set in the PA sub-challenge.

2) Comparison With LPS and MPS: Table IX shows the
performance comparison among the LPS-, MPS-, and MMPS-
based features derived from CQT on ASVspoof 2019 PA evalua-
tion set. We observe that the MMPS-based systems can perform
better than the corresponding MPS-based systems on ASVspoof
2019 PA evaluation set, and both of them outperform the corre-
sponding LPS-based systems in terms of t-DCF and EER. This
again confirms our idea of the proposal of MMPS based on
MPS. By capturing both magnitude and phase information, they
can outperform LPS with only magnitude information in replay
speech detection.

In addition, it can be seen that CQMOC slightly outperforms
CQ-OST for GMM, LCNN and ResNet classifiers. Although
the improvements are small for these handcrafted features, they
also reveal the effectiveness of our proposed CQT-MMPS and
CQMOC features for replay speech detection.

TABLE IX
PERFORMANCE COMPARISON AMONG THE LPS-, MPS, AND MMPS-BASED

FEATURES IN T-DCF AND EER (%) ON ASVSPOOF 2019 PA EVALUATION SET

TABLE X
PERFORMANCE COMPARISON IN T-DCF AND EER (%) WITH SOME

COMMONLY-USED FEATURES ON ASVSPOOF 2019 PA EVALUATION SET

TABLE XI
PERFORMANCE COMPARISON IN T-DCF AND EER (%) AMONG THE PROPOSED

SYSTEMS AND SOME KNOWN SYSTEMS ON ASVSPOOF 2019 PA EVALUATION

SET

3) Comparison With Other Commonly-Used Features: As
shown in Table X, our proposed CQMOC feature is com-
pared with some other commonly-used features. Similarly, we
consider MFCC, LFCC, IFCC, CQCC CQSPIC, CosPhase,
APGDF, and MODGDF with GMM as the back-end model. We
find that the proposed CQMOC feature can perform much better
than the other features, which reveals the effectiveness and ro-
bustness of CQMOC for replay attack detection. Besides, it also
confirms that the proposed idea of the modified magnitude-phase
spectrum is correct.

4) Comparison With Some Known Systems: Table XI shows
the performance comparison among our proposed systems and
some known systems on ASVspoof 2019 PA evaluation set. Most
of the systems considered here are similar to those in Section IV-
C4. In [39], the group delay gram (GD gram) is used as the input

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:12:54 UTC from IEEE Xplore.  Restrictions apply. 



1074 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

to the ResNet models, denoted as (GD gram)-ResNet. The (GD
gram)-ResNet-DA refers to the model where data augmentation
(DA) is additionally applied.

Considering the GMM-based systems, we observe that our
proposed CQMOC feature can perform much better than the
CQCC, LFCC, and ZTWCC features. Significant improve-
ments are also obtained if the utterance-based models are em-
ployed, such as LCNN and ResNet. As shown in Table XI,
the (CQT-MMPS)-ResNet system consistently outperforms the
other published ResNet-based systems without DA. Moreover,
it can achieve a comparable result with the (GD gram)-ResNet-
DA system. Among all the LCNN-based systems, the (CQT-
MMPS)-LCNN system is shown to perform the best in terms
of both t-DCF (0.024) and EER (0.90%) metrics. These results
reveal that our proposed CQT-MMPS and CQMOC features are
more effective for replay speech detection for GMM as well as
neural-network-based LCNN and ResNet models.

V. UKSD PERFORMANCE

In this section, the proposed TCMS and MTL methods for
UKSD are evaluated on ASVspoof 2019 corpus. Our previous
work, the combination-based method (CM) for UKSD [53], is
used as the baseline here. In addition, the CQT-MMPS proposed
in this work is considered as the input feature.

A. Training Data

As shown in Table III, the ASVspoof 2019 PA training
set contains bonafide and replay speech examples, whereas
the ASVspoof 2019 LA training set consists of bonafide and
synthetic speech examples. In order to train the TCMS or
MTL frameworks, we combine the ASVspoof 2019 LA and PA
training set together and obtain a new training set that contains
three classes, which are bonafide, replay, and synthetic speech
examples. Specifically, there are 7980, 48 600, and 22 800
utterances for bonafide, replay, and synthetic speech examples
in the new training set, respectively. Therefore, there are 71 400
spoofed samples if replay and synthetic speeches are jointly
classified as the spoofed class.

B. Experimental Setup

From the experimental results on KKSD, it can be found that
MMPS-based systems consistently outperform the correspond-
ing CQMOC-based systems when LCNN or ResNet is consid-
ered as the classifier. As a result, here we only use MMPS-based
systems to evaluate the performance of UKSD. In other words,
only (CQT-MMPS)-LCNN and (CQT-MMPS)-ResNet systems
are constructed for our proposed TCMS and MTL methods
in this work. Besides, the parameters for extracting features
such as CQT and MMPS are the same as mentioned above.
Additionally, the training strategies of (CQT-MMPS)-LCNN
and (CQT-MMPS)-ResNet are also reserved here. For the TCMS
method, the only difference is that three nodes are used in
the output layer. In addition, the t-DCF metric for TCMS is
measured using the same approach as that of the two-class

countermeasure. For the MTL approach, a new branch is addi-
tionally constructed, serving as the spoofing-kind discriminator,
as illustrated in Section III-B2.

C. Results and Analysis

Table XII shows the performance comparison among the
LCNN-based and ResNet-based models using the CQT-MMPS
feature as input in terms of t-DCF and EER (%). Herein,
LCNN2-LA and LCNN2-PA denote the traditional two-class
LCNN models trained on ASVspoof 2019 LA and PA training
sets, respectively, and LCNN2-CM represents LCNN2 is trained
using the combination-based method (CM). The LCNN3-TCMS
refers to the three-class LCNN model with TCMS method, while
LCNN2-MTL represents the adapted MTL framework based on
LCNN2. In the same way, the corresponding definitions of the
ResNet-based models are similar to that of the LCNN-based
models. From Table XII, some observations can be found:
� Though the respective-kind-based models can obtain

promising results for same-spoofing-kind attack detection,
significant performance degradation can be observed when
it comes to cross-spoofing-kind attack detection scenarios.
Considering LCNN2-PA as an example, it achieves the best
result on ASVspoof 2019 PA evaluation set with 0.024 in
t-DCF and 0.90% in EER, while generalizes poorly on
ASVspoof 2019 LA evaluation set with only 0.347 in
t-DCF and 18.24% in EER. These results imply that tradi-
tional KKSD methods cannot work well for UKSD. It also
reveals the necessity of exploring new methods to solve the
problem of UKSD.

� In case of UKSD, our proposed TCMS and MTL methods
consistently outperform the combination-based method
on both ASVspoof 2019 LA and PA evaluation sets for
LCNN-based as well as ResNet-based models. The reason
behind this is probably that both TCMS and MTL methods
regard LA and PA attacks as two different spoofing kinds
and are trained to distinguish between them, while the
combination-based method simply considers LA and PA
attacks together as a joint spoofed class. This reveals that
the fine-grained discriminability in spoofing kinds (PA and
LA) could further enhance performance for UKSD. In
addition, it also confirms that the proposed idea of TCMS
and MTL is correct. The MTL outperforms TCMS for
LCNN-based models slightly, while TCMS outperforms
MTL marginally for ResNet-based models. Overall, these
two methods are both effective for UKSD with comparable
performance.

� Comparing all systems in Table XII, we can observe that
the best result on each evaluation set is achieved by KKSD
methods. Specifically, the ResNet2-LA model achieves the
best result on ASVspoof 2019 LA evaluation set, while
the LCNN2-PA model performs the best on ASVspoof
2019 PA evaluation set. However, the UKSD methods,
including the CM baseline as well as the proposed TCMS
and MTL methods, can obtain comparable results with
the best systems on both evaluation sets. Furthermore, if
we only compare the results based on the same model
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TABLE XII
PERFORMANCE COMPARISON IN T-DCF AND EER (%) AMONG LCNN-BASED AND RESNET-BASED MODELS USING THE CQT-MMPS FEATURE AS INPUT. THE

NUMBERS IN BOLD FONT ARE THE BEST RESULTS ON EACH EVALUATION SET FOR THE LCNN-BASED OR RESNET-BASED MODELS

Fig. 2. The t-SNE visualization of evaluation data embeddings that are extracted by ResNet2-LA, ResNet2-PA, ResNet2-CM, ResNet3-TCMS, and ResNet2-
MTL, respectively. “bonafide_PA” (red) and “spoofed_PA” (blue) mean bonafide and spoofed data in the ASVspoof 2019 PA evaluation set, respectively, while
“bonafide_LA” (green) and “spoofed_LA” (orange) refer to bonafide and spoofed data in the ASVspoof 2019 LA evaluation set, respectively. 1000 samples are
randomly chosen for each label type (color).

architecture (LCNN or ResNet), we observe that some
UKSD methods can outperform the corresponding KKSD
method. For example, LCNN2-MTL outperforms LCNN2-
LA on ASVspoof 2019 LA evaluation set, and ResNet3-
TCMS outperforms ResNet2-PA on ASVspoof 2019 PA
evaluation set. This indicates that by using the proposed
TCMS or MTL methods, the synthetic training samples

and the replay training samples might benefit each other in
some way like data augmentation or model regularization,
which further enhances performance for UKSD.

D. t-SNE Visualization

To better understand the mechanism of the proposed TCMS
and MTL methods, we use t-SNE projection [68] to visualize
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embedding distributions of the models. An example of the
ResNet-based models is considered, which is shown in Fig. 2.

Considering the KKSD methods, ResNet2-LA and ResNet2-
PA, they distinguish well between bonafide data and the known-
kind spoofing attacks, while discriminate the unknown-kind
spoofing attacks much more poorly. Considering ResNet2-
LA as an example, although it distinguishes well between
“bonafide_LA” (green) and “spoofed_LA” (orange), it fails to
separate “bonafide_PA” (red) and “spoofed_PA” (blue).

For the UKSD methods, ResNet2-CM, ResNet3-TCMS, and
ResNet2-MTL can separate the bonafide data from the spoofed
data better in comparison with the KKSD methods discussed
above. Comparing the CM baseline with our proposed TCMS
and MTL methods, we can observe that ResNet2-CM mixes up
all spoofed samples, while both ResNet3-TCMS and ResNet2-
MTL can well distinguish “spoofed_LA” from “spoofed_PA”.
Moreover, more samples are misclassified by ResNet2-CM,
which reveals the effectiveness of our newly-proposed TCMS
and MTL methods for UKSD. Interestingly, ResNet3-TCMS
almost mixes up all bonafide data, while ResNet2-MTL could
still discriminate between “bonafide_PA” and “bonafide_LA”.
From our point of view, the result for ResNet2-MTL could be
a little counterintuitive. Our explanation is that ResNet2-MTL
may learn to distinguish “spoofed_LA” from “spoofed_PA”
by some common characteristics in the dataset level, such as
speaker traits and text. In other words, the bonafide data and
spoofed data in two subsets are coupled by some means. Thus
“bonafide_PA” and “bonafide_LA” could be separated at the
same time.

VI. CONCLUSION AND FUTURE WORK

This work attempts to utilize the magnitude and phase in-
formation collectively to improve the performance of SD. The
MMPS is proposed as a novel feature to capture both magnitude
and phase information. On the basis of MMPS obtained from the
CQT (i.e., CQT-MMPS), a handcrafted feature CQMOC is fur-
ther proposed. Three classic anti-spoofing models are considered
to evaluate our proposed CQT-MMPS and CQMOC features,
including the frame-level model (GMM) and the utterance-level
models (LCNN and ResNet). In addition, the TCMS and MTL
methods are proposed for UKSD in real-world applications
because there is usually no prior knowledge about the kinds
of spoofing attacks.

The experimental results show that the newly-proposed
MMPS can outperform both LPS and MPS derived from CQT for
both synthetic and replay speech detection in our implementa-
tions. In addition, CQT-MMPS can achieve better or comparable
performance in comparison with the state-of-the-art systems. We
also find that the proposed handcrafted CQMOC outperforms
most of the handcrafted features on ASVspoof 2019 corpus. The
strong modelling capabilities of the neural-network-based mod-
els (LCNN and ResNet) are also validated from their promising
performance on both synthetic and replay speech detection.
Moreover, it is shown that the proposed TCMS and MTL meth-
ods can outperform the combination-based method when we
have no prior information about the spoofing kind. In addition,

compared with the respective-kind-based methods, the TCMS
and MTL achieve comparable results for the same-spoofing-kind
attack detection, while they show much better performance in
cross-spoofing-kind evaluation scenarios.

As mentioned above, we conducted cross-corpora experi-
ments on the ASVspoof 2019 LA and PA databases to evaluate
our proposed UKSD methods. Considering ASVspoof 2019 PA
is a stimulated replay database that has a significant difference
with a real replay speech database, we will investigate our pro-
posed methods on some other realistic replay speech databases
such as BTAS 2016 and ASVspoof 2017 in the future.
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