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ABSTRACT

Recently, the end-to-end approach has been successfully applied
to multi-speaker speech separation and recognition in both single-
channel and multichannel conditions. However, severe performance
degradation is still observed in the reverberant and noisy scenarios,
and there is still a large performance gap between anechoic and
reverberant conditions. In this work, we focus on the multichan-
nel multi-speaker reverberant condition, and propose to extend our
previous framework for end-to-end dereverberation, beamforming,
and speech recognition with improved numerical stability and ad-
vanced frontend subnetworks including voice activity detection like
masks. The techniques significantly stabilize the end-to-end train-
ing process. The experiments on the spatialized wsj1-2mix corpus
show that the proposed system achieves about 35% WER relative
reduction compared to our conventional multi-channel E2E ASR
system, and also obtains decent speech dereverberation and separa-
tion performance (SDR = 12.5 dB) in the reverberant multi-speaker
condition while trained only with the ASR criterion.

Index Terms— Neural beamformer, overlapped speech recog-
nition, dereverberation, speech separation, cocktail party problem

1. INTRODUCTION

With the development of deep learning, much progress has been
achieved in the speech processing field, including both speech en-
hancement [1–3] in the frontend and automatic speech recognition
(ASR) [4–6] in the backend. In recent years, more and more inter-
ests have been focused on the deep learning based speech processing
in the cocktail party scenario [7,8]. In this scenario, there are usually
multiple speakers talking simultaneously, even with the presence of
background noise and reverberation. It is much more difficult to
cope with than in the clean and anechoic conditions, and the ASR
performance is still far behind humans in such conditions.

In the cocktail party scenario, while it is straightforward to com-
bine separately trained speech enhancement and speech recognition
components as one system, as investigated in many prior studies
[9, 10], the end-to-end (E2E) optimization of all involved compo-
nents is also an important and interesting research topic. The E2E
system can naturally reduce the mismatch between different compo-
nents through joint training. In addition, only the noisy signal and
the corresponding transcriptions are required for the E2E training of
both frontend and backend, making it much easier for data collec-
tion and model training in real applications. Some prior work has
illustrated the potential of E2E optimized systems. Settle et al. [11]
proposed a joint training framework, combining the chimera++ net-
work [12] and end-to-end ASR [13] for single-channel multi-speaker
speech separation and recognition. In the multichannel condition,

the neural beamformer [14, 15] based speech enhancement is often
applied to better utilize the spatial information. (1) Single-speaker
cases: In [16–18], the neural beamformer is jointly trained with the
acoustic / end-to-end ASR model for denoising and speech recog-
nition. Subramanian et al. [19] further included dereverberation in
the joint training, which is based on the weighted prediction error
(WPE) [20] algorithm. (2) Multi-speaker cases: Chang et al. [21]
proposed the MIMO-Speech architecture, where the beamformer is
jointly trained with ASR to perform speech separation.

In this paper, we aim to build a robust framework for the fully
end-to-end optimization of dereverberation, beamforming (denois-
ing and separation), and speech recognition. In our prior work [22],
some preliminary attempts have been made to explore the end-to-end
training of three components: WPE-based dereverberation, neural
beamforming, and end-to-end ASR. However, the well-known nu-
merical instability issue [23] in operations of both WPE and beam-
forming, usually caused by the singularity in the matrix inverse op-
eration, is still unsolved in [22], leading to performance degradation
or even misleading the model convergence.

In this work, we try to tackle this problem, by proposing four
techniques to improve the stability and performance of the end-to-
end system. These methods have been proven extremely helpful in
our setup, significantly mitigating the numerical instability issue dur-
ing training. Based on these techniques, we propose a robust archi-
tecture that supports the end-to-end training of different beamformer
variants and ASR, which are also compared in our experiments. In
addition, the voice activity detection (VAD) like mask [19, 24] for
WPE and beamforming is introduced to mitigate the frequency per-
mutation problem in the end-to-end training, as described in Sec-
tion 2.3. Our experiments on the spatialized wsj1-2mix [21] corpus
show that the proposed approaches can achieve significant perfor-
mance improvement compared to the previous system.

2. END-TO-END FRAMEWORK FOR
DEREVERBERATION, BEAMFORMING, AND ASR

In this section, we first describe the proposed architecture for end-to-
end dereverberation, beamforming (denoising and separation), and
ASR. And the formulation of different beamformer variants sup-
ported in the proposed framework is given. We then introduce the
techniques applied to solve the numerical instability issue. Later, the
frequency permutation phenomenon and our solution are discussed.

2.1. Model architecture with advanced frontend

Our proposed end-to-end architecture is shown in Fig. 1, which is
comprised of two main modules: the frontend (speech enhance-
ment) and the backend (ASR). Here, speech enhancement includes
dereverberation, denoising and source separation. In our previous
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Fig. 1: Proposed new architecture for end-to-end training of the fron-
tend and ASR backend.

article [22], we adopted a weighted power minimization distortion-
less response (WPD) convolutional beamformer [25] as a unified
frontend, while the recent study [26] showed that a WPD can be fac-
torized into a WPE dereverberation filter and a weighted minimum
power distortionless response (wMPDR) [26] beamformer without
loss of optimality when they are jointly optimized. Therefore, in this
article, we adopt the factorized form as a simpler alternative1. That
is, the frontend is composed of a single mask estimator (MaskNet),
a DNN-WPE [27] dereverberation module, and a beamformer mod-
ule. In addition, we mainly support two alternative beamformer
types, respectively, based on 1) minimum variance distortionless
response (MVDR) [28] and 2) wMPDR. While MVDR is a widely
used state-of-the-art beamformer, wMPDR is shown to perform
optimal processing jointly with WPE [26]. The ASR backend is a
joint connectionist temporal classification (CTC) / attention-based
encoder-decoder [13] model for recognizing the separated single-
channel speech. Compared to those in our previous work [22],
the proposed architecture can support different beamformer vari-
ants in a single framework, by using a single mask estimator for
WPE / beamforming and applying single-source WPE for process-
ing speech of different sources.

Below we give a detailed description of the proposed system.
Consider a multichannel input speech signal composed of J speak-
ers, Yt,f = {Yt,f,c}Cc=1 ∈ CC , it can be described as follows in the
short-time Fourier transform (STFT) domain:

Yt,f =

J∑
j=1

Xj
t,f + Nt,f =

J∑
j=1

X(d),j
t,f + X(r),j

t,f + Nt,f (1)

X(d),j
t,f =

∆−1∑
τ=0

ajτ,fs
j
t−τ,f ≈ vjfs

j
t,f , (2)

X(r),j
t,f =

La∑
τ=∆

ajτ,fs
j
t−τ,f , (3)

where C > 1 denotes the number of microphones. t ∈ {1, . . . , T}
and f ∈ {1, . . . , F} represent the indices of time and frequency
bins. N denotes noise. Xj denotes the reverberant signal, which
can be decomposed into an “early” part X(d),j and a “late” part X(r),j .
X(d),j contains the direct path and early reflection of the j-th speaker,
while X(r),j denotes the late reverberation. ajτ,f is the acoustic trans-
fer function with length La. ∆ denotes the starting frame for the
“late” part. sj is the j-th source signal. vjf =

{
vjf,c
}C
c=1
∈ CC is

the steering vector (SV). The input signal is first processed by the
frontend module for dereverberation and separation. First, the WPE
submodule performs dereverberation separately for each source j di-

1The experimental result on WPD is also given in Table 2 for comparison.

rectly on the mixture Y in Eq.(1):

{Mj
wpe}Jj=1, {Mj

bf,tgt}
J
j=1, {Mj

bf,noise}
J
j=1 = MaskNet(Y) , (4)

λjt,f =
1

C

C∑
c=1

M j
wpe,t,f,c

1
T

∑T
τ=1 M

j
wpe,τ,f,c

|Yt,f,c|2 ∈ R , (5)

Ŷj = Yj
wpe = WPE(Y,λj) ∈ CT×F×C . (6)

Here, Mj
wpe = {M j

wpe,t,f,c}t,f,c denotes the estimated derever-
beration mask, Mj

bf,tgt and Mj
bf,noise denote the estimated speech

mask and distortion mask for the j-th speaker, respectively. λj =
{λt,f}jt,f is the estimated time-varying power of the speech signal.
WPE(·) represents the dereverberation filter computation based on
the WPE algorithm described in [29], and the detailed formulas
are omitted here for simplicity. The signal Ŷ is then denoised and
separated by the neural beamformer. Within the scope of this paper,
although different beamformers are designed for different objectives
with a linear constraint, their solutions can be uniformly written as:

Φj
α,f =

∑T
t=1 M

j
t,fŶ

j
t,f

(
Ŷj
t,f

)H∑T
t=1 M

j
t,f

∈ CC×C , (7)

wj
f =

(
Φj

N,f

)−1
Φj

S,f

Trace
[(

Φj
N,f

)−1
Φj

S,f

]u , [w/o SV] (8)

=

(
Φj

N,f

)−1
vjf(

vjf
)H(

Φj
N,f

)−1
vjf

(
vjf,q

)∗
, [w/ SV] (9)

X̂j
t,f =

(
wj
f

)H
Ŷt,f ∈ C , (10)

where M
j
t,f = 1

C

∑C
c=1 M

j
t,f,c is a channel-averaged mask, where

M j
t,f,c ∈ {M

j
bf,tgt,t,f ,M

j
bf,noise,t,f}, and Φj

α,f is a covariance matrix

with a subscript α ∈ {N, S, noise}. We set M
j
t,f = M

j
bf,noise,t,f

for Φj
noise,f and M

j
t,f = M

j
bf,tgt,t,f for Φj

S,f . Similarly, we set

M
j
t,f = M

j
bf,noise,t,f and M

j
t,f = 1/λjt,f , respectively, for Φj

N,f

of MVDR and wMPDR. (·)∗ and (·)H denote conjugate and conju-
gate transpose, respectively. wj

f is the beamforming filter for the
j-th speaker, which can be calculated with either Eq. (8) [w/o SV]
or Eq. (9) [w/ SV]. While Eq. (8) has been widely used for the
E2E training of neural beamformers [17, 21], Eq. (9) is a standard
equation for distortionless beamformers. u is a vector denoting the
reference channel, which can be estimated by the attention mecha-
nism [30], or based on the average estimated a posteriori SNR [15],
or manually set as a one-hot vector. The subscript q denotes the ref-
erence channel index. X̂j

t,f is the beamformed signal. vjf can be
calculated through the eigendecomposition [31]:

vjf = Φj
noise,f MaxEigVec

[(
Φj

noise,f

)−1
Φj

S,f

]
∈ CC , (11)

where MaxEigVec[·] calculates the eigenvector corresponding to
the maximum eigenvalue. Due to the lack of complex eigendecom-
position support in PyTorch at the time of writing, we replace it with
the power iteration method [32], which can be easily implemented
for back-propagation, with a slight loss of precision.

It is worth noting that in the sense of end-to-end training, the
MVDR and wMPDR beamformers are potentially equivalent. By
substituting the Φj

N,f for wMPDR defined above into Eq. (8) or
Eq. (9), we can find that the average operation in the denominator of
Eq. (5) is canceled. Thus the derived wMPDR filter only depends on
the (inversed) mask predicted by the neural network, which is very
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similar to the MVDR formulation. So it is hard to tell which beam-
former is actually learned by the network via end-to-end training.

Finally, the separated stream X̂j = {X̂j
t,f}t,f of each speaker

j is fed into the ASR backend for recognition. First, the log Mel-
filterbank coefficients Oj = {oj1, . . . ,o

j
T } with global mean and

variance normalization (GMVN-LMF(·)) is extracted from X̂j ,
which is then transformed by the encoder into a high-level represen-
tation Hj = {hj1, . . . ,h

j
L} (L ≤ T ) with subsampling. In order to

solve the label ambiguity problem with multiple speakers (J > 1),
the permutation invariant training (PIT) technique [33] is applied
in the CTC module to determine the order of the label sequences.
With the best permutation derived in CTC, the representation Hj

is processed by the attention-based decoder to generate the output
token sequences R̂j = {R̂j1, . . . , R̂

j
N} with length N , while Rj in

Fig. 1 is the corresponding reference label. The speech recognition
process for each speaker j is formulated as follows:

Oj = GMVN-LMF(|X̂j |) , (12)
Hj = Encoder(Oj) , (13)
R̂jn ∼ Attention-Decoder(Hj , R̂jn−1) , (14)

where R̂jn is the output token at the n-th decoding step.
Note that the entire system is optimized with sorely the ASR

loss, which is a combination of the attention and CTC losses.

2.2. Attacking the numerical instability issue

The numerical instability issue has been a well-known problem in
the beamformer [34], especially when optimized in an end-to-end
manner. The numerical problem generally originates from the com-
plex operations in the WPE and beamforming formulas, such as the
complex matrix inverse, leading to poor performance in certain fre-
quency bins sparsely populated. Such behaviors are particularly un-
desirable in the joint training with ASR, as they can easily result in
not-a-number (NaN) gradients that fail to backpropagate correctly
and even prevent the model from converging properly [22], thus
badly impacting the overall model performance. In order to mitigate
this problem, we propose four approaches to improve the stability of
both WPE and beamforming submodules:

(1) Diagonal loading In order to stabilize the matrix inverse op-
eration in WPE and beamforming in Eqs. (6), (8), (9) and (11), par-
ticularly at its backward pass, we introduce a diagonal loading [34]
term as a perturbation to the complex matrix Φ before inversion:

Φ′ = Φ + εTrace(Φ)I , (15)
where I is the identity matrix, and ε is a tiny constant. For better
stabilization, Trace(Φ) is used to make the term adaptive to signal
level, and ε was set at a relatively large value for WPE in our exper-
iments, as described in Section 3.1.

(2) Mask flooring When optimizing masks with an implicit
criterion, i.e. the ASR loss, we observed that the mask estimator
learned to predict sparse or spiky masks. This means, the mask es-
timator sets only the most relevant time-frequency bins to one, and
the remaining ones to zero. It can then result in a singular covariance
matrix in some frequency bins, making the WPE / beamforming pro-
cess unstable. To avoid the spiky masks, we propose a mask flooring
operation to introduce some regularization to the masks in Eq. (4):

M̂t,f = Maximum{Mt,f , ξ} , (16)

where M̂t,f denotes the floored mask value, Mt,f ∈ {Mwpe,t,f,c,
M bf,tgt,t,f , M bf,noise,t,f}, and ξ is a constant flooring factor. The idea
of the flooring is, that enough values have to be nonzero to reduce
the effect of the flooring value. So the mask estimator is prevented
from predicting sparse or spiky masks.

(3) More stable complex matrix operations Due to the lack
of complex support in PyTorch, the alternative method in Section
4.3 in [35] was used in our previous work [22], which tries to find
a factor to construct an invertible real matrix and maps the complex
inversion to some real matrix operations. But it sometimes fails due
to the poor estimate of the factor that results in a singular matrix. In
this paper, a more stable matrix inverse formula [36] is implemented,
which converts the problem of complex matrix inverse Φ−1 = (A+
iB)−1 ∈ Cm×m into the inverse of a 2m× 2m real matrix:[

A B
−B A

]−1

=

[
R{Φ−1} I{Φ−1}
−I{Φ−1} R{Φ−1}

]
, (17)

whereR{·} and I{·} denotes the real and imaginary parts of a com-
plex matrix. Furthermore, we replace the inverse and the subsequent
multiplication operations in Eqs. (6), (8) and (9) with a solve op-
eration, which directly computes the solution x to a linear matrix
equation Φx = v, where x and v are m-dimensional vectors. It
further improves the numerical accuracy and stability.2

(4) Double precision In terms of the implementation, while
the end-to-end systems normally operate with the single-precision
data / parameters, we find it beneficial to use the double precision
for complex operations in the frontend module. It can reduce the
error caused by complex operations, such as the inverse of close-to-
singular matrices. Thus the stability of matrix inverse related opera-
tions can also be improved. Similar effects are also reported in [37],
which proposes to jointly optimize the WPE and acoustic models.

With the above proposed techniques, we are now able to op-
timize the convolutional beamformer and ASR jointly, without the
need of pretraining as in [22].

2.3. VAD-like mask for WPE and beamforming
During the end-to-end optimization of the frontend and backend, we
often observed that beamformer outputs corresponding to different
speakers are permuted with each other at certain frequencies. This
is known as the frequency permutation problem [38]. It is proba-
bly caused by the fact that beamforming filters are estimated inde-
pendently at each frequency bin with the predicted time-frequency
(T-F) masks, and that the log Mel-filterbank features used for eval-
uating the ASR loss are obtained by averaging frequency bins with
a triangle window, thus largely reducing the influence of the permu-
tation errors on the loss. This, however, is not optimal for speech
enhancement in the frontend. To solve this problem, instead of using
T-F masks in Eq. (4), we propose to use the voice activity detection
(VAD) like masks [19, 24], which share the same (soft) value over
the frequency axis. This mask will be shown effective to mitigate the
frequency permutation problem in our experiments..

3. EXPERIMENTS
3.1. Experimental setup
In this section, we evaluate our proposed framework on the arti-
ficially generated spatialized wsj1-2mix dataset [21], which con-
tains anechoic and reverberant versions of multichannel two-speaker
speech mixtures. We trained our models on a multi-condition train-
ing subset, including both reverberant and anechoic training sam-
ples in the spatialized wsj1-2mix (98.5 hr ×2), and WSJ train si284
single-speaker clean data (81.5 hr, only for training ASR). Since
the proposed framework jointly optimizes the frontend and backend
with the ASR loss, no parallel clean data is required for training. The
development and evaluation subsets only contain reverberant sam-
ples from the spatialized wsj1-2mix, with the duration of 1.3 hr and

2The new implementations inverse2 and solve are now available at
https://github.com/kamo-naoyuki/pytorch_complex.
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Table 1: Evaluation of the proposed techniques with the WPE +
MVDR + ASR model of different architectures on the spatialized
reverberant wsj1-2mix evaluation set. The number of filter taps K
and channels C are set to 5 and 2 for evaluation (same as training),
respectively.3

Architecture WER (%) PESQ STOI SDR (dB)

Original mixture - 1.20 0.65 -1.45
Arch in [22] 21.88 1.12 0.62 1.23

+ (1) Diagonal loading 15.51 1.32 0.74 3.20
+ (2) Mask flooring 20.13 1.24 0.71 1.14
+ (3) Stable complex op. 15.70 1.31 0.74 3.05
+ (4) Double precision 18.06 1.27 0.73 1.99
+ Tech (1)–(4) 15.18 1.31 0.74 2.85

Proposed arch 15.01 1.31 0.74 2.81+ Tech (1)–(4)

0.8 hr respectively. For feature extraction, the STFT is performed on
the 16-kHz input speech with a 25-ms Hann window and a 10-ms
frame shift, and the 257-dimensional spectral feature is extracted.
For the ASR backend, 80-dimensional log Mel-filterbank features
are extracted for each separated spectrum.

All our proposed models are implemented based on the ESPnet
framework. The mask estimation network in Fig. 1 is a 3-layer bidi-
rectional long-short term memory (BLSTM) network with 600 cells
in each direction, followed by J × 3 output layers, where the num-
ber of speakers is J = 2. The number of iterations for performing
WPE is 1. During training, the number of channels C and WPE fil-
ter taps K are fixed to 2 and 5, respectively. In the ASR backend,
we followed the same configurations in [39]. We set ε in Eq. (15) to
10−3 and 10−8 for WPE and beamforming, respectively. The mask
flooring factor ξ in Eq. (16) is set to 10−6 and 10−2 for WPE and
beamforming, respectively. The number of iterations for estimating
the steering vector using the power iteration is set to 2. The refer-
ence channel q in Eq.(8) is set to 1. The Noam optimizer with 25000
warmup steps and an initial learning rate of 1.0 was used for training.
3.2. Experimental results

We first evaluate the proposed techniques in Section 2.2 in both pre-
viously used [22] and the proposed architectures, as shown in Ta-
ble 1. For speech recognition, we use the word error rate (WER) for
evaluation. The speech enhancement (SE) performance is evaluated
using three common metrics: signal-to-distortion ratio (SDR) [40],
short-time objective intelligibility (STOI) [41] and perceptual eval-
uation of speech quality score (PESQ) [42]. And the clean source
signal from WSJ is adopted as the reference signal. In Table 1, we
can observe that all proposed techniques can bring significant perfor-
mance improvement compared to the baseline architecture in [22].
And the combination of the four techniques can further achieve a
better ASR result, with improved speech enhancement performance.
This illustrates the effectiveness of the proposed approaches. The
last row shows that with the proposed techniques, our proposed ar-
chitecture in Fig.1 can also achieve comparable performance.

We then evaluate the proposed architectures with different
beamformer variants under different configurations of filter taps
K ∈ {1, 3, 5, 7, 10}, while the number of channels C is fixed to 6,
and only present the best performance of each model in Table 2 due
to the limited space. We also present the best ASR results from [22]
in rows 2 and 3 for comparison, and the SE performance are also
evaluated. Comparing rows 2 & 5 and rows 3 & 6, we can observe
that the proposed methods greatly improve the ASR and SE perfor-

3More detailed results can be found at https://speechlab.sjtu.
edu.cn/members/wangyou-zhang/icassp21-material.pdf.

Table 2: Evaluation of different beamformer variants and mask types
on the spatialized reverberant wsj1-2mix evaluation set. “w/ SV” and
“w/o SV” in Eq. (8)–(9) denote with and without explicit use of the
steering vector, respectively.

ID Model (+ASR) Formula Mask WER PESQ STOI SDR

1 WSJ eval92 [4] - - 4.4 - - -
2 WPE+MVDR [22] w/o SV T-F 15.72 1.15 0.62 0.62
3 WPD [22] w/o SV T-F 13.97 1.33 0.68 0.38
4 MVDR

w/o SV T-F
11.66 1.46 0.80 6.48

5 WPE+MVDR 9.50 1.56 0.83 7.73
6 WPE+wMPDR 9.44 1.63 0.82 8.49
7 WPE+MVDR w/ SV T-F 9.02 1.50 0.83 6.93
8 WPE+wMPDR 9.23 1.54 0.82 7.12
9 WPE+MVDR w/o SV VAD 9.45 1.95 0.86 12.54

10 WPE+wMPDR 10.26 1.97 0.86 12.20

mances compared to the previous systems, which attributes to the
proposed techniques for mitigating the numerical instability issue.
From row 4 to row 5, the performance gain indicates the DNN-WPE
submodule plays an important role in our proposed architecture.
Comparing the second and third sections in Table 2, the MVDR and
wMPDR beamformers show very similar results based on the formu-
las in either Eq. (8) [w/o SV] or Eq. (9) [w/ SV]. This also indicates
the potential equivalence of these beamformers in the end-to-end
training, as mentioned in Section 2.1. And the latter formula tends
to yield better ASR results with end-to-end training. When compar-
ing the second and the last sections in Table 2, we can find that the
proposed VAD-like masks are beneficial for the SE performance,
with obvious improvement on PESQ, STOI and SDR. This indicates
that the VAD-like mask can effectively mitigate the frequency per-
mutation problem, thus improving the SE performance. Since the
evaluation set is generated based on the WSJ eval92 subset, the first
row in Table 2 can be regarded as the topline for our system. And
we can observe that the proposed models with different beamformer
variants can all achieve very good ASR performance, with an only
∼5% higher WER than the topline on WSJ.

4. CONCLUSIONS
In this paper, we propose a robust framework for end-to-end train-
ing of dereverberation, beamforming (denoising and separation),
and speech recognition. Four techniques are proposed to regular-
ize and stabilize the WPE / beamforming process in the frontend
module, which are shown to effectively improve the numerical sta-
bility. Different beamformer variants and mask types are compared
in our proposed framework. Our experiments on the spatialized
wsj1-2mix corpus show that the proposed end-to-end system can
achieve fairly good ASR results, with also decent speech enhance-
ment performance in the reverberant multi-speaker condition, while
only optimized with the ASR criterion. In our future work, we
would like to investigate the end-to-end training in realistic and
more challenging conditions.
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