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Abstract
Recent studies have shown that neural vocoders based on gener-
ative adversarial network (GAN) can generate audios with high
quality. While GAN based neural vocoders have shown to be
computationally much more efficient than those based on au-
toregressive predictions, the real-time generation of the highest
quality audio on CPU is still a very challenging task. One major
computation of all GAN-based neural vocoders comes from the
stacked upsampling layers, which were designed to match the
length of the waveform’s length of output and temporal resolu-
tion. Meanwhile, the computational complexity of upsampling
networks is closely correlated with the numbers of samples gen-
erated for each window. To reduce the computation of up-
sampling layers, we propose a new GAN based neural vocoder
called Basis-MelGAN where the raw audio samples are decom-
posed with a learned basis and their associated weights. As
the prediction targets of Basis-MelGAN are the weight values
associated with each learned basis instead of the raw audio sam-
ples, the upsampling layers in Basis-MelGAN can be designed
with much simpler networks. Compared with other GAN based
neural vocoders, the proposed Basis-MelGAN could produce
comparable high-quality audio but significantly reduced com-
putational complexity from HiFi-GAN V1’s 17.74 GFLOPs to
7.95 GFLOPs.
Index Terms: neural vocoder, speech synthesis, generative ad-
versarial networks

1. Introduction
Neural vocoders have made extraordinary success in recent
studies. To date, the neural vocoders that generate the high-
est quality audios are based on autoregressive prediction,
such as WaveNet [1] and WaveRNN [2]. However, these
autoregressive-based models have been suffered from low in-
ference speed due to their high computational complexity and
the difficulties of parallelization. To achieve the paralleliza-
tion on GPU, several non-autoregressive based neural vocoders,
such as Parallel WaveNet [3], WaveGlow [4] and ClariNet [5],
have been proposed. While these neural vocoders based on
parallelization significantly improve the inference speed, these
improvements are only applicable when the model inferences
on GPU. More importantly, the total computational complexity
does not reduce with parallelization. To reduce the total compu-
tational complexity of neural vocoders, several approaches such
as LPCNet [6], Multi-Band WaveRNN [7] and FeatherWave [8]
are proposed to utilize existing signal processing techniques to
simplify the model complexity. However, even with these im-
provements, the computational complexity of neural vocoders
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are remained very high.
Recently, several GAN-based non-autoregressive models

are proposed which produce high-quality audio with signifi-
cantly less computation than their alternatives. For example,
MelGAN [9] and HiFi-GAN [10] can even produce audio in
real-time on CPU with relative high quality. GAN-based neu-
ral vocoders’ major strength is that it can generate a window
of audio samples (e.g., 256) at every inference step, which is
a significant improvement in computation compared to previ-
ous neural vocoders where only a single audio sample can be
generated at every inference step.

While GAN-based neural vocoders have shown to be com-
putationally much more efficient than these based on autore-
gressive predictions, the real-time generation of the highest
quality audio on the CPU is still a very challenging task. Some
of the neural vocoders based on GAN can produce speech in
real-time on CPU, but sample quality is relatively lower. For
example, HiFi-GAN V1 can produce high-quality speech, but it
cannot infer in real-time on some middle or low-end devices.
Therefore, the computation of GAN-based neural vocoders
needs to be further reduced.

One major computation of all GAN-based neural vocoders
comes from the stacked upsampling layers, which were de-
signed to match the waveform’s length of output and temporal
resolution. As the complexity of upsampling layers is closely
correlated with the number of samples in each window to be
predicted, a more effective representation of the signal in each
window can reduce the number target dimension, reducing the
complexity of upsampling layers. Motivated by this, we pro-
pose to represent audio signals more compactly and efficiently
to mitigate upsampling networks’ complexity. Specifically, we
decompose audio signals with a learned basis and their asso-
ciated weights. With this decomposition, audio signals can be
efficiently represented with a nonnegative weighted sum of the
N basis matrix. Since the basis is fixed, only the weights asso-
ciated with each basis need to be predicted. As the number of
bases is much smaller than the raw audio waveform, the target
output has much less dimension, which means a much simple
upsampling network is required for matching the output dimen-
sion.

There are several existing methods in terms of audio de-
composition, especially in the related field of blind audio sep-
aration. Traditionally, the audio signal decomposition can be
achieved with independent component analysis (ICA) [11] and
time-domain nonnegative matrix factorization (NMF) [12]. Re-
cent studies have explored the use of deep learning for audio
decomposition and made great success in the field of audio sep-
aration [13, 14]. The deep learning based audio decomposition
is a more data-driven representation that can be learned to min-
imize the audio reconstruction loss. This deep learning based
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Figure 1: Model structure of TasNet.

audio decomposition has another advantage in that it can be im-
plicitly incorporated into other network architectures and be up-
dated jointly with other objectives. In this study, we choose the
TasNet network [15], which was initially proposed for the task
of audio separation, to learn the basis of audio signals for de-
composition. One major advantage of using TasNet for learning
audio decomposition is that the learned basis has better gener-
ality than using a simple audio reconstruction as an objective.

Finally, to enhance Basis-MelGAN’s modelling capabili-
ties of time-frequency characteristics, we use multi-resolution
STFT discriminator. The multi-resolution STFT discrimina-
tor show better performance than the multi-period discriminator
used in HiFi-GAN and more efficient since the input to the dis-
criminator is spectrogram instead of the raw waveform during
adversarial training. 1

2. Proposed Method
The proposed model consists of two parts, TasNet and Basis-
MelGAN. We first train a TasNet model to get basis matrix that
will be used for audio decomposition in Basis-MelGAN model.
The basis matrix learned from TasNet will be used as frozen
parameters in Basis-MelGAN generator to train the model. We
will first show the design and training of TasNet. The details of
the Basis-MelGAN will be introduced in the following sections.

2.1. TasNet

TasNet is a single-channel speech separation model. The in-
put of TasNet is mixture of speech from different sources x ∈
R1×T of C sources s1, · · · , sc ∈ R1×T , where the purpose of
TasNet model is to estimate s1, · · · , sc, from mixture speech of
x. The model composes of three parts as in Figure 1. These are
encoder network, separation network, and a basis matrix that
can be learned jointly with other networks. The Encoder net-
work consists of a 1-D convolution layer and a ReLU activation
function. The separation module is a fully convolutional net-
work that consists of stacked 1-D dilated convolutional blocks.
The output of encoder Ŵ is used as the input of the separation
module. Both the encoder and separation network is the same
with Conv-TasNet [16]. The main difference in this work is that
we uses two masks M1,M2 ∈ RN×T̂ for two mixed audio
shown as figure 1. Since the objective of training TasNet is to
obtain the basis of audio for decomposition, we do not design
the network’s output to separate audios from different sources
as in the original TasNet framework. Instead, we add random
noises to each audio input, and the objective is to reconstruct
original input audio. Therefore, the input to TasNet is a mixture
of clean speech and noise, and the model is trained to separate
them with two masks of M1,M2. Specifically, the weight ma-
trix associated with clean speech and noise are obtained by

Wi = Ŵ ·Mi (1)

1Audio samples can be found in https://blog.xcmyz.xyz/demo/ and
code can be found in https://github.com/xcmyz/FastVocoder.
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Figure 2: Model structure of Basis-MelGAN.

where i ∈ {1, 2}, represents the clean speech and noise.
Then, the separated Wi are multiplied with the basis matrix to
obtain the separated speech and noise signals yi via

yi = B ·Wi (2)

B represents the basis matrix of size [m,n] with m the
length of each audio window to be decomposed, and n repre-
sents the number of basis for decomposition. m is normally
much smaller than n to be able to represent raw audio more ef-
fectively. In this work, we use the number of basis used as 256,
and the window length of audio is 32. Therefore, the basis ma-
trix is [32, 256], and each window of audio with a length of [1,
32] can be decomposed and represented with associated weight
values of [1, 256]. The training objective uses SI-SNR as in the
original TasNet paper.

2.2. Basis-MelGAN

The proposed Basis-MelGAN consists of three parts: MelGAN
Generator, Transform layer, and Basis Matrix learned from Tas-
Net. It takes mel-spectrogram as input and output audio wave-
form as shown in Figure 2.

The generator of Basis-MelGAN shares the same structure
as MelGAN. It is a fully convolutional network consists of a
stack of transposed convolutional layers to upsample the input
mel spectrogram to have the same resolution of time-domain
audio. Each transposed convolutional layer is followed by a
stack of residual blocks with dilated convolutions.

The transform layer is a linear feed-forward network, which
consists of two stacks of linear layer with a leaky ReLU [17], a
batch normalization layer [18] and a linear network. A ReLU
activation function is added to produce nonnegative weight.

Finally, the basis matrix layer is the same as TasNet men-
tioned in section 2.1. It shares the same parameter of the basis
matrix with the TasNet basis matrix. Primarily, we train Basis-
MelGAN by frozen the parameter of the basis matrix because
it shows the best performance in this way. The model can be
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Figure 3: Model structure of multi-resolution STFT discrimina-
tor.

in convergence with unfrozen basis matrix in random initializa-
tion, but which performance is not good as freezing basis matrix
with TasNet parameter.

2.3. STFT Discriminator

We use a new discriminator called multi-resolution STFT dis-
criminator (MFD), which is a discriminator with input of spec-
trogram. It has the same architecture as a multi-scale discrimi-
nator (MSD) in MelGAN and the same multi-resolution settings
as multi-resolution STFT loss in Parallel WaveGAN [19] shown
as figure 3. As discriminator is a more powerful criterion than
L1 loss function [20], it helps generator learn time-frequency
characteristics more efficiently so that generator can generate
high quality audio with more details in frequency domain. We
combine MFD with MSD in adversarial training. This combi-
nation makes the generator learn both time-frequency charac-
teristics and the distribution of the speech waveform. Besides,
for ablation study, we also train generators with the same multi-
discriminator architecture as HiFI-GAN, i.e., multi-period dis-
criminator (MPD) and MSD. We find the combination of MFD
and MSD shows the best performance, which achieves a higher
MOS score of 4.21 than 4.13 of the combination of MPD and
MSD. In addition, MFD is much faster than MPD during train-
ing. The combination of MFD and MSD only spends 1/4 time
to reach the same step as the combination of MPD and MSD
since the input to the discriminator is spectrogram instead of
the raw waveform during adversarial training. 2

2.4. Loss Function

We use four different loss functions to train the Basis-MelGAN
generator, which are weight loss Lweight, multi-resolution
STFT loss Lstft, multi-scale adversarial loss Ladv s and multi-
resolution STFT adversarial loss Ladv f . We do not use feature
matching loss in MelGAN, since the model can not converge
when add this loss. For weight loss Lweight, we minimize the
`1 norm between the target weight W from TasNet and the pre-
dicted weight W from the Basis-MelGAN generator, where:

Lweight =
∥∥W −W

∥∥
1

(3)

For single STFT loss Lsingle stft, we minimize the spec-
tral convergence Lsc and log STFT magnitude Lmg between
the target waveform y from TasNet and the predicted waveform

2At the time of preparing this paper, we became aware that a preprint
paper Universal MelGAN [21] has the similar idea to improve the ef-
ficiency of adversarial training for GAN based vocoder, which is using
spectrogram as the input of discriminator instead of the raw waveform.
Our work is independently developed and the fact that many design
choices are completely different.

y from the Basis-MelGAN generator. Hence the objective of
Lsc and Lmg becomes (|stft(·)| indicates the STFT function
to compute magnitudes and N is the number of elements in the
magnitude):

Lsc =
‖|stft(y)| − |stft(y)|‖F

‖|stft(y)|‖F
(4)

Lmg =
1

N
‖log|stft(y)| − log|stft(y)|‖1 (5)

Lsingle stft = Lsc + Lmg (6)

For the multi-resolution STFT loss function, we use M sin-
gle STFT loss functions with different STFT parameters (i.e.,
FFT size, window size and hop size). Therefore, the multi-
resolution STFT loss function is shown as follow:

Lmr stft =
1

M

M∑
m=1

Lm
single stft (7)

For multi-scale adversarial loss Ladv s and multi-resolution
STFT adversarial loss Ladv f , we minimize the binary cross-
entropy between the output of discriminator passed by target
waveform y and the output of discriminator passed by Basis-
MelGAN output y, where:

Ladv s =
1

Ns
BCELoss(MSD(y),MSD(y)) (8)

Ladv f =
1

Nf
BCELoss(MFD(y),MFD(y)) (9)

Ns, Nf indicate the number of single discriminator in
multi-scale discriminator and multi-resolution STFT discrimi-
nator. Thus, the total loss LG for Basis-MelGAN generator is
shown as following:

LG = Lsc + Lmg + Ladv s + Ladv f (10)

For training multi-scale discriminator and multi-resolution
STFT discriminator, we minimize the binary cross-entropy
Ldis real between the output of discriminator passed by tar-
get waveform y and real label, and the binary cross-entropy
Ldis fake between the output of discriminator passed by Basis-
MelGAN output y and fake label, where:

Ldis real =
1

N
BCELoss(D(y), 1) (11)

Ldis fake =
1

N
BCELoss(D(y), 0) (12)

N indicates the number of single discriminators in multi-
scale discriminator or multi-resolution STFT discriminator. D
indicates MSD or MFD. 1 indicates real label and 0 indicates
fake label.

3. Experiments
We compare our model with the state-of-the-art GAN based
neural vocoder model HiFi-GAN and a very fast GAN based
neural vocoder model Multi-Band MelGAN [22].
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Table 1: MOS scores of each model.

Model Name MOS 95% CI

Ground Truth 4.56 ±0.09

Basis-MelGAN (Large) 4.21 ±0.10
Basis-MelGAN (Light) 4.15 ±0.11

HiFi-GAN V1 4.25 ±0.11
HiFi-GAN V2 4.18 ±0.10
HiFi-GAN V3 4.10 ±0.11
Multi-Band MelGAN 3.97 ±0.10

3.1. Dataset

For experiments, we use an open-source single-speaker dataset
LJSpeech, which contains 13,100 short audio clips of a single
speaker reading passages from 7 non-fiction books. We leave
out 100 sentences from the corpus for testing. We use the STFT
same settings as [10] for fair comparison.

3.2. Model details

3.2.1. TasNet

We use the same structure as Conv-TasNet and change the
hyper-parameter of Conv-TasNet to adapt our model. We train
the model to separate mixture which are mixed by waveform
from LJSpeech and random noise sampled from normal distri-
bution with 0 mean and 0.03125 std. After training the TasNet
for 300k steps, we get a basis matrix, and it will be used as
frozen parameters of Basis-MelGAN.

3.2.2. Basis-MelGAN

The network structure of Basis-MelGAN is similar to MelGAN
and we only use two 4x upsampling layers instead of four up-
sampling layers with [8, 8, 2, 2] upsampling scales in MelGAN.
Besides, we experiment with a light footprint version model for
better inference speed, which reaches the fastest inference speed
among our testing models.

3.3. Training details

We first train the Basis-MelGAN generator with weight loss and
multi-resolution STFT loss for 300k steps. We start to use ad-
versarial training from 300k to 1M steps, and during adversarial
training, we do not use weight loss since we find it achieves bet-
ter performance. We use Adam optimizer [23] with initial learn-
ing rate as 0.001 for generator and 0.0005 for discriminator. We
train our model on Nvidia V100 (16G).

3.4. Evaluation

3.4.1. Quality

Mean Opinion Score (MOS) of the naturalness of generated
speech utterances are rated by human subjects who partici-
pated in the listening tests. We use ground-truth mel spec-
trogram as input and evaluate the quality of audio gener-
ated by testing models. The results are shown in Table 1.
“Basis-MelGAN (Large)” means the original Basis-MelGAN
and “Basis-MelGAN (Light)” means the light footprint version
Basis-MelGAN. Remarkably, Basis-MelGAN (Large) achieves
the MOS score of 4.21 with a tiny gap of 0.04 compared to
HiFi-GAN V1, but Basis-MelGAN (Large) is 2.6 times faster

Table 2: MOS scores of end-to-end speech synthesis.

Model Name MOS 95% CI

Ground Truth 4.51 ±0.07

Griffin Lim 3.12 ±0.06

Basis-MelGAN (Large) 4.10 ±0.08
Basis-MelGAN (Light) 4.02 ±0.07

HiFi-GAN V1 4.12 ±0.07
HiFi-GAN V2 4.03 ±0.07
HiFi-GAN V3 3.99 ±0.08
Multi-Band MelGAN 3.82 ±0.07

Table 3: RTF of models

Model Name Low High Para (M)

Basis-MelGAN (Light) 0.1460 0.0100 3.30
Basis-MelGAN (Large) 0.6668 0.0395 15.90
HiFi-GAN V1 1.8786 0.1033 13.92
HiFi-GAN V2 0.1960 0.0303 0.92
HiFi-GAN V3 0.1977 0.0213 1.46
MB MelGAN 0.1351 0.0175 2.53

than HiFi-GAN V1. Besides, for the ablation study, we train
Basis-MelGAN without frozen basis matrix, which reaches the
MOS score of 3.93, which is much lower than Basis-MelGAN
with frozen basis matrix. This ablation study shows the neces-
sity of use a frozen basis matrix from TasNet to improve the
audio quality.

We also examine the proposed models’ effectiveness when
applied to an end-to-end speech synthesis pipeline, which is a
acoustic model for text to mel spectrogram and a neural vocoder
for mel spectrogram to waveform. We use Tacotron2 [24] as
an acoustic model and make fine-tuning training with predicted
mel spectrogram of Tacotron2 on all testing models. The MOS
scores are listed in Table 2. Our models show a robust ability to
adapt to end-to-end speech synthesis.

3.4.2. Inference speed

We test the real-time factor (RTF) of neural vocoder models on
a low-end platform and high-end platform, shown as Table 3.
Low end platform is single-core AMD EPYC 7551 (2.0 GHz,
2GB RAM) and high end platform is 8 core Intel(R) Xeon(R)
Gold 6146 (16GB RAM). Basis-MelGAN (Light) reaches the
highest speed, which is even faster than Multi-Band MelGAN.
Basis-MelGAN (Large) reaches 0.67 RTF on low-end platform.
Meanwhile, HiFi-GAN V1 can not be in real-time.

4. Conclusions
We have introduced a GAN-based neural vocoder model, which
has a novel architecture, using TasNet basis matrix as a part of
the model, and have shown this design makes the improvement
of inference speed and audio quality. Our work demonstrates
the feasibility of using audio decomposition in neural vocoder.
We hope there will be more deep learning-based audio decom-
position techniques used in speech synthesis to accelerate infer-
ence speed and improve audio quality.
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