INTERSPEECH 2021
30 August — 3 September, 2021, Brno, Czechia

Audio-Visual Multi-Talker Speech Recognition in A Cocktail Party

Yifei Wu', Chenda Li', Song Yang?, Zhonggin Wu?, Yanmin Qian'’

'MoE Key Lab of Artificial Intelligence, Al Institute
X-LANCE Lab, Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China
>TAL Education Group, China

{yifei.wu, lichendal996,yanmingian}@sjtu.edu.cn, {yangsongl, wuzhonggin}@tal.com

Abstract

Speech from microphones is vulnerable in a complex acous-
tic environment due to noise and reverberation, while the cam-
eras are not. Thus, utilizing the visual modality in the “cock-
tail party” scenario with multi-talkers has become a promising
and popular approach. In this paper, we have explored the in-
corporating of visual modality into the end-to-end multi-talker
speech recognition task. We propose two methods based on
the modality fusion position, which are encoder-based fusion
and decoder-based fusion. And for each method, advanced
audio-visual fusion techniques including attention mechanism
and dual decoder have been explored to find the best usage of
the visual modality. With the proposed methods, our best audio-
visual multi-talker automatic speech recognition (ASR) model
gets almost ~50.0% word error rate (WER) reduction compared
to the audio-only multi-talker ASR system.

Index Terms: audio-visual, multi-talker ASR, cocktail party,
attention model

1. Introduction

Multi-talker automatic speech recognition (ASR) is one of the
techniques for solving the “cocktail party problem” [1]. Thanks
to the permutation invariant training (PIT) [2] and the advances
of end-to-end ASR [3, 4, 5, 6] systems, researchers are able to
train multi-talker ASR systems in an end-to-end manner [7, 8,
9,10, 11, 12, 13, 14].

Compared to the single-talker ASR systems, the main chal-
lenge of multi-talker ASR in the “cocktail party” comes from
the more complex acoustic environment. On the one hand,
in that complex “cocktail party” environment, more than one
talker may talk simultaneously, making it more difficult to track
the talkers. On the other hand, noise and reverberation may
also be involved, which will make the situation more compli-
cated. Thus, the speech signal collected from the microphone
will be heavily distorted in these complex conditions, and con-
sequently, the performance of the multi-talker ASR system will
be degraded. Some speech separation and enhancement meth-
ods can be incorporated into the multi-talker ASR system to
tackle the complex acoustic environment [8, 15, 16, 17]. How-
ever, these techniques focus on the speech signal itself while
more information may be utilized in reality.

In real scenarios, information other than speech can be uti-
lized to solve the “cocktail party” problem. We humans are
masters at this. In humans’ selective hearing [18], the visual
modality sometimes plays an important role [19] in addition
to the audio modality. An extreme example is that lip-reading
without auditory perception can also achieve fair performance
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Figure 1: The backbone and baseline end-to-end single-channel
multi-talker ASR model adopted in this paper. K is assumed to
be 2 in the figure.

[20]. Besides, the visual modality is usually not disturbed by
the acoustic environments, i.e. the quality of visual modality
is immune to poor acoustic environments [21]. Thus, utilizing
the visual modality in the multi-talker scene is an intuitive and
promising approach.

The advantages of incorporating the visual modality into
multi-talker ASR are twofold. First, due to the high corre-
lation with speech, the visual modality (e.g. lip movement,
facial expression) contains the knowledge for speech recogni-
tion. Researches have been conducted to investigate the pos-
sibility to introduce visual information into speech recognition
[22,23,24,25]. Second, visual is also a practical guide for solv-
ing the permutation problem (also known as the label ambigu-
ity problem ) [26, 2] in the multi-talker disentangling training.
It is well-known that the PIT [2] criterion is first presented to
solve the label ambiguity problem in the speech separation task.
However, with each talker’s visual information introduced, we
could reasonably assume that the separation model would out-
put the results with a permutation prejudged by the visual in-
puts. Thus we can obtain the speech of the talker we care about,
training the model with fixed label order. This idea has been ver-
ified by experiments conducted on speech enhancement tasks
[27, 28] and speech separation tasks [29, 30].

A recent work [31] also focused on this idea and proposed
a streamlined and integrated audio-visual speech recognition
(AVSR) system to recognize the target speech out of an over-
lapped one. The primary approach is to mask the hidden audio
features using a gate calculated by both the audio mixture and
the target talker’s visual input. However, this work focuses on
one-talker case only, while the vision to multiple talkers might
further improve the system performance.

In this paper, we extend the audio-visual speech recogni-
tion task to the multi-talker application, to recognize multiple
talkers” speech in the cocktail party problem utilizing visual
information of each talker. We also present several practical
approaches to introduce visual information into a Transformer-
based [32] end-to-end multi-talker ASR system [33]. With the
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proposed method, an approaching relative ~50.0% reduction on
WER is achieved compared to the baseline, which only utilizes
audio information.

The rest of this paper is organized as follows. Section 2 de-
scribes the assumptions and the goal of the task and the baseline
model. Section 3 proposes two approaches to introduce visual
information into the encoder part of the model and two for the
decoder part. The experimental details and the results are pre-
sented and discussed in Section 4. Finally, Section 5 concludes
the paper.

2. Task Definition and Baseline

The multi-talker ASR aims to recognize the speech for each
talker from speech mixtures of K (K > 2) talkers. Let
X?* = (x1, -+ ,x7,) denotes T, frames of input features ex-
tracted from the speech mixture where K talkers talk simulta-
neously. And the transcriptions of the k-th talker can be denoted
asy* = (yF, - ,y[k}k), where U is the length of the tokens
for the k-th talker, and y® € {1,---, W} is distinct labels in
the dictionary of W tokens. The task of multi-talker ASR is to
estimate y*, k = 1,--- , K from the mixture input X*:

(7F k=1, K} = fuo(X?) )
where f,(-) is the mapping function of the audio-only multi-
talker ASR system.

In this paper, the baseline audio-only multi-talker ASR sys-
tem is mainly adopted from [33] , which is based on the joint
CTC/attention encoder-decoder model [5]. The backbone of
baseline model is shown in Fig.1, which could be divided into
the encoder part and the decoder part. In the encoder part,
there are two kinds of layers named speaker-different encoder
(Enckp) layers and recognition encoder (Encge.) layers. The
former one is deemed to extract the target talker from the mix-
ture, while the latter one performs the regular function of the
ASR encoder layer. Each of Enc¥y, and Encge. is a stack of
Transformer encoder layers, while Decoder is a stack of Trans-
former decoder layers with an input embedding layer and a
feed-forward output layer for sequence inference. Formally, the
encoding process could be written as follows:

HMix - EncMix (Xa)y
Hgp = Encsp(Huix), k=1,
Hiec = Encrec(Hsp), k=1, -

’K7
K.

@

where X*® is the feature sequence of the input speech mixture
and HE,. is the encoded feature of talker k. For each HE., the
decoding process of Decoder is

ck = Attention(eﬁ, 1 Hﬁec) ,

k k k k
e, = Update(e’nfh Cn—1, ynfl)7

3)

Yn ~ Decoder(ey, yn—1)-

where ¢ and e respectively denotes the context vector with
dimension D and the hidden state of decoder of talker & at de-
coding step n.

In the training phase, the correspondence between the out-
put label sequences and the reference label sequences are deter-
mined using the permutation presented by PIT on the connec-
tionist temporal classification (CTC) [34] loss.
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Figure 2: Two approaches to introduce visual information into
the encoder part. K is assumed to be 2 in the figure. X" €
RT1*Pv Xv2 ¢ RT2 XDy gre the visual features of talker 1
and 2 respectively. Fig.2b shows the modified structure of each
layer in the Transformer encoder Enck,,. @& represents concate-
nation. Modules of the same name share parameters.

3. Audio-Visual Multi-Talker ASR

In this section, we introduce the audio-visual multi-talker ASR.
Based on the position of incorporating visual information, the
proposed audio-visual multi-talker ASR model can be divided
into two types, the audio-visual encoder approach and audio-
visual decoder approach. For both approaches, we have ex-
plored two variants of model structure respectively.

3.1. Audio-Visual Encoder

We describe two approaches to introduce visual information
into the encoder part of the end-to-end multi-talker ASR model
introduced in Section 2. The approaches are shown in Fig.2. A
module named Encvjs is included to transform the visual fea-
tures X'* into deep embedding H"* of shape Ty, x D.

Variant 1: Concat. The first approach named Concat in Fig.2a
is based on the idea that the visual embedding and speech em-
bedding could be concatenated. The visual embeddings are
firstly resampled on the time dimension to match the length
of the audio embedding. Then the concatenation is performed
on the feature dimension D. After concatenation, each Ency,
processes the fusion embedding Hwix and the outputs H’§]; for
each talker is projected to get dimension-compressed embed-
ding HE,. HE, is regarded as the visual-aware deep embed-
ding, and the following pipeline is the same as the baseline sys-
tem. Eq.4 formally describes the calculation processes.

Hyi, = Concat(Encyix(X*), {H™ : k=1,--- , K}),
HY, = Proj(Enclp (Hyi)), k=1, , K,
Hllgec = EnCRec(H];D), k = ]_7 e 7K.

@

Variant 2: Query Vision. Inspired by [24], we present an-
other approach named Query Vision as the second approach. As
shown in Fig.2b, it only modifies the inner structure of each
layer of Enc¥,. The main idea is to enable Encky, to learn to
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Figure 3: The baseline decoder structure and two approaches to introduce visual information into the decoder part. H'* and HE,. are
the transformed visual features and the output of Encge. of talker k, respectively. Fig.3b shows the modified structure of each layer in

Transformer decoder. ® represents concatenation.

extract the visual information needed by the current frame of
speech feature. The speech of the target talker could then be
focused on and extracted. First, we create 2 attention modules
[32] named Src-Att inside the layer. Then we take the output
of the self-attention module from the audio feature to query
the key-value pairs generated by visual features, utilizing the
attention mechanism. Finally, the outputs of all the attention
modules are concatenated and projected to the size of the input
speech feature. The whole process could be written as:

gDo = HMiX7
Hg),. = SelfAttention(Hsp, _, ),
H = Attention(HY, ,H'*), k =1,--- , K, 5)

sp, = Proj(Concat(H, , {Hgyy, : k= 1,---, K})),
Hsp = Hyp, .

where ¢ = 1,...,n, n is the number of layers in Enc§D. HgDi
represents the output of the i-th layer of Enc,. Although Query
Vision shares a common structure with Dual Attention proposed
in [24], their aims differ. Query Vision uses the audio modality
to fetch relevant visual information related to the target talker,
while Dual Attention utilizes predicted symbol to query both
modalities to obtain information related to the next prediction.

3.2. Audio-Visual Decoder

In this subsection, we describe two approaches named Dual At-
tention and Dual Decoder to introduce visual information into
the decoder part of the model introduced in Section 2. They
are shown in Fig.3b and Fig.3c. To clarify the modification
we make, the structure of Decoder module in the baseline net-
work is also presented in Fig.3a. Note that these two approaches
could be used together with the ones described in Section 3.1.
Variant 1: Dual Attention. The first approach is named Dual
Attention, and this mechanism is originally proposed in [24] to
combine audio and visual information during decoding. It du-
plicates the attention module inside the decoder layer to query
both audio and visual features. After the context features are
calculated, they are concatenated and projected to a size similar
to the input Hpe; , of the layer. Eq.6 gives the formal defini-
tion of each Transformer layer in Dual Attention.

HY e, = SelfAttention(Hpec; _, ),

Hy , = Attentiony (HqDeci ) HQCC)’
Hg‘e\éi = Attentions (HqDeci JH' ),
HDeci _ PI‘Oj (Concat(Hq Hatta Hatt\, ))

Dec; ? Dec; ? Dec;

(6)

where ¢ = 1,...,m, m is the number of layers in the Trans-
former decoder. Hp.., represents the output of the i-th layer of
the Transformer decoder. Hpe, is the embedded output sym-
bol, and Hp.,, is used to calculate the next output symbol.
Variant 2: Dual Decoder. Inspired by [35], we propose a vari-
ant of Transformer-based Dual Decoder as the second decoder-
based approach. It duplicates the Transformer decoder for the
other modality and concatenates the decoders’ output before
predicting output symbols by FeedForward. Formally,

Hj,.. = TransformerDecoder, (Embed(y,_1), Hﬁec) ,
Hy,. = TransformerDecoder, (Embed(y;—1), H'*),  (7)
Hpe. = Concat(HaDew H‘I/Dec) .

4. Experiment
4.1. Data Preparation

Experiments were done on LRS2 dataset [35]. It consists of
synchronized video and audio pairs collected from BBC televi-
sion. The videos are all 25fps and the sample rate of the audios
is 16kHz. The dataset is split into four subsets: pretrain, train,
val, and test. Here we combine the pretrain set and train set for
our model training. Two-talker audio mixtures are generated by
normalizing and summing two audios selected randomly with
different talker labels and less than 20% difference in lengths.
The signal-to-noise ratio (SNR) is randomly chosen in [-10, 10].
80-dimensional log filterbank features are extracted for each
mixture with Hann window length 25ms and hop length 10ms.
A lip-reading model was trained on LRW dataset [36] fol-
lowing the recipe described in [20, 22]. To obtain the 512-
dimensional visual features as input, we crop the videos to the
mouth region and process them with the 3D ResNet frontend.

4.2. Experimental Setup

Our proposed model is built and evaluated on ESPnet2 [37]
framework. A VGG-like module with 256 channels in each of
the two 2D convolution layers is used as Ency;ix for subsam-
pling the length of audio feature sequence by 0.5. Encvis, Encdp,
Ench, Encge. are all Transformer encoders with 2, 4, 4, 8 lay-
ers respectively. Transformer decoders in the model are all with
6 layers. When using Concat as encoder part, Encdp, and EncZp,
has attention feature dimension 768, while length of the visual
features are upsampled by 2 using nearest interpolating strategy
to match the audio feature’s length. In other cases, every layer in
Transformer encoder or decoder has attention feature dimension
of 256, feedforward layer dimension of 2048, and the attention
heads number is 4. The training loss is computed by interpo-



lating the CTC loss and attention decoder loss with factor 0.3.
For the models that use audio-only encoders, PIT is used for the
CTC loss calculation, and the obtained minimum permutation
is used for the attention decoder. Models are trained until con-
vergence by using Adam optimizer with batch size set to 240.
The learning rate is set to 10™% and 25000 warmup steps [32].
An RNN language model for decoding is also trained with the
text of our training set with the default configuration.

4.3. Results

We evaluated different combinations of the audio-visual en-
coders and decoders. The performance on test set is listed in
Table.1. For baseline and configurations with only an audio-
visual decoder introduced, PIT is necessary since visual infor-
mation could not efficiently guide the separation. In these cases,
both H'* and H"? are inputted to the audio-visual decoder and
the context vectors of them are extracted separately using the
same parameters for calculating attention scores. In Dual Atten-
tion the extracted visual context vectors are concatenated with
Hj,., and Hp,. in each decoder layer i, while in Dual Decoder
the features are concatenated just before the FeedForward layer.
Another approach named audio-visual modality driven gated fu-
sion was proposed by [31] to recognize the target speech out of
an overlapped one by gating the hidden audio and visual fea-
tures, and its performance on LRS2 is also shown in Table.1 for
reference. It is noted that this result may not be totally compa-
rable with our results due to the differences in data preparation.

Table 1: Performance of different configuration combinations.
Columns titled "Fixed” contain error rates computed by the
outputs with fixed permutation similar to the one of input vi-
sions, while columns titled ”Min” try to find a permutation with
minimum error rates. * The best system proposed in [31]. 1With
audio-visual inputs rather than audio-only input.

. CER(%) WER(%)
Configuration Fixed Min Fixed Min
AV®A+concat[31]* - - 10.31 -
baseline (PIT) 49.59 11.28 6449 17.49

+DualAtt (PIT)¥ 4936 11.27 64.18 17.31
+DualDec (PIT)f 49.56 11.07 6446 17.20
Concat 9.76 9.75 1549 1548
+DualAtt 1043 1042 1631 16.30
+DualDec 10.67 10.66 16.87 16.84
Query Vision 5.32 5.32 9.47 9.47
+DualAtt 5.50 5.50 9.69 9.69
+DualDec 5.04 5.04 9.10 9.10

Table.1 shows that the best approach proposed in this paper
is to combine Query Vision and Dual Decoder, which outper-
forms the baseline system by a relative ~50.0% WER reduc-
tion. This improvement strongly demonstrates the advantage of
introducing visual information into a multi-talker ASR system.

By comparing the WERs of the audio-visual encoders, it
turns out that Query Vision behaves much better than Concat,
which implies the effectiveness of Query Vision in extracting
related visual features while maintaining a relatively small in-
formation loss. For audio-visual decoders, it is interesting to
notice that both Dual Attention and Dual Decoder increase the
test WER when combined with Concat. We believe it indi-
cates that Ency;, trained inside model with Concat could not ex-
tract visual features compatible with the audio-visual decoders.
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the system with different configurations listed in Table.1. For
clarity, we mark every 5 data points on each curve.

With QueryVision or no audio-visual encoder introduced, Dual
Decoder slightly outperforms Dual Attention. It could be no-
ticed that Dual Attention always increases the WER when an
audio-visual encoder is included, compared with the configura-
tion without it. However, it brings a slight decrease to the WER
of the baseline system. This is possibly because of the poor sim-
ilarity between the visual features and the embedded symbol.
According to [35, 24, 31], recent lip-reading systems still pro-
vide unsatisfying results on LRS2 dataset. Thus, it is reasonable
that the relationship between the visual features and the em-
bedded symbol is hard to be discovered by the attention mech-
anism. We believe this factor causes the decrease in system
performance when combining Dual Attention with audio-visual
encoders. Better audio-visual decoders might be designed fol-
lowing this idea, which could be included in our future work.

It is expected that for configurations without an audio-
visual encoder, the CERs and WERs computed with fixed out-
put permutation are considerably high, because they lack addi-
tional information to guide the separation process. For the other
configurations, the error rates computed with fixed permutation
and the minimum permutation (permutation with the minimum
error rate) are almost the same, which implies that both the pro-
posed two audio-visual encoders could utilize the visual inputs
to extract the corresponding speech from the mixture.

Fig.4 shows how accuracy on validation set changes during
training for each configuration listed in Table.1. We observe
that the curves of configurations with audio-visual encoders in-
crease faster and converge earlier than others. This indicates
that introducing visual information into the encoder accelerates
the model’s learning on separating and recognizing the mixture.

5. Conclusions

In this paper, we have explored the visual modality utilization
in the multi-talker speech recognition task. We have also pre-
sented several approaches to introduce visual information into
a Transformer-based multi-talker ASR system. By evaluating
the system on LRS2 dataset, we have demonstrated that the
additional visual information greatly contributes to multi-talker
ASR systems by solving the label ambiguity problem, speeding
convergence and improving the system performance.
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