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Abstract

The robustness of an anti-spoofing system is progressively more

important in order to develop a reliable speaker verification sys-

tem. Previous challenges and datasets mainly focus on a spe-

cific type of spoofing attacks. The ASVspoof 2019 edition is the

first challenge to address two major spoofing types - logical and

physical access. This paper presents the SJTU’s submitted anti-

spoofing system to the ASVspoof 2019 challenge. Log-CQT

features are developed in conjunction with multi-layer convolu-

tional neural networks for robust performance across both sub-

tasks. CNNs with gradient linear units (GLU) activations are

utilized for spoofing detection. The proposed system shows

consistent performance improvement over all types of spoofing

attacks. Our primary submissions achieve the 5th and 8th posi-

tions for the logical and physical access respectively. Moreover,

our contrastive submission to the PA task exhibits better gener-

alization compared to our primary submission, and achieves a

comparable performance to the 3rd position of the challenge.

Index Terms: anti-spoofing, spoofing detection, variational au-

toencoder, convolutional neural network

1. Introduction

As a convenient and reliable method for identity authentica-

tion, automatic speaker verification (ASV) [1] has attracted re-

searchers’ attention in recent years and gradually become ma-

ture, which makes it commercialized such as applications in call

centers, security measures, etc. However, the ASV technologies

are vulnerable, which makes ASV systems exposed to various

spoofing attacks. Therefore, researchers manage to develop ef-

fective anti-spoofing systems, also known as presentation attack

detection (PAD) systems, to protect ASV systems from mali-

cious spoofing attacks.

At the beginning stage, researches were carried out in di-

verse datasets using different evaluation metrics, which made

the results incomparable. In order to gather a community

with standard databases and performance measures, a series

of anti-spoofing competitions were born, for example, the Au-

tomatic Speaker Verification Spoofing and Countermeasures

(ASVspoof) challenges that serve as special sessions in IN-

TERSPEECH 2013 [2], 2015 [3], 2017 [4] and 2019, respec-

tively. ASVspoof 2013 aimed at raising this serious spoofing

problem, but no specific or appropriate solution was proposed.

ASVspoof 2015 focused on speech synthesis (SS) and voice

conversion (VC), known as logical access condition (LA), while

ASVspoof 2017 was designed to develop countermeasures ca-

pable of discriminating between bona fide (genuine) audios and
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replay ones, known as physical access condition (PA). Equal er-

ror rate (EER) is the common metric shared by them. ASVspoof

2019 covers both LA and PA but is divided into two separate

subtasks.

To enhance the performance of anti-spoofing systems, re-

cent works mainly focus on two approaches. One is to im-

prove the front-end features extracted from audios [5, 6, 7, 8],

where GMMs or LightCNN models are usually used as the clas-

sifiers. Another approach is to design new deep learning models

[9, 10, 11, 12, 13] that learn discriminative representations for

this task. Both of these two methods have been shown effective,

which suggests that using appropriate front-end features as well

as excellent deep learning models are both vital to the spoofing

detection.

The rest of the paper is organized as follows, Section 2

briefly introduces the task of ASVspoof 2019 challenge, and

Section 3 describes the features we used in the challenge. Sec-

tion 4 will present the CNN based models and further explore

the capabilities of GLU activations. The experiment details and

results are given in Section 5. Section 6 concludes the whole

paper.

2. Task Description

For better assessment of countermeasures for various spoof-

ing attacks, ASVspoof 2019 challenge comprises two subtasks:

logical access (LA) and physical access (PA).

2.1. Logical Access

Logical access (LA) spoofing attacks refer to spoofed speech

generated with text-to-speech (TTS) and voice conversion

(VC). As the widely use of neural-network-based systems in

TTS and VC communities, the quality of generated speech is

comparable to human speech, which brings new challenges to

the spoofing detection system.

In the ASVspoof 2019 challenge, training data includes

spoofed utterances generated according to two voice conversion

and four speech synthesis algorithms, while spoofed algorithms

in evaluation data are all unseen in the training set. Strong ro-

bustness is a requirement for our proposed spoofing detection

systems.

2.2. Physical Access

Physical access (PA) spoofing attacks, also known as replay at-

tacks, are performed at the sensor level. Since the somewhat

uncontrolled setup in ASVspoof 2017 challenge makes the re-

sults difficult to analyze, the acoustic and replay configurations

are carefully simulated and controlled in ASVspoof 2019 chal-

lenge, thus bringing some new insights into the replay spoofing

problem.
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The main focus of the PA subtask lies in detecting spoof-

ing speech under different acoustic and replay configurations.

Similar to the LA subtask, training and development data are

generated from the same, randomly selected acoustic room and

distance configuration, while the evaluation data is generated

from different ones.

3. Feature Extraction

Here we propose the features used in our work. If not further

specified, a normal frame-rate is adopted with 10ms frame shift

and 25ms window size was adopted. Librosa [14] was used as

our tool of choice for feature extraction.

Log-CQT replaces the standard Fourier transform of an au-

dio signal with the constant-q transform (CQT). The constant q

transform is very similar to Fourier transform but has logarith-

mically spaced center frequencies. In this work 84 dimensional

log-CQT features were extracted with a frame shift of 32ms.

Log mel spectrogram (LMS) is a standard feature for ASR and

other speech related tasks such as emotion detection [15] and

audio event detection [16]. Here, 64 dimensional LMS features

were extracted, where the hamming window function was used

during pre-processing.

Phase features are extracted in addition to standard magnitude

spectrogram features. The frequency spectrum of X can be de-

composed into magnitude (|X(ω)|) and phase (ejφω) of as in

Equation (1)

X(ω) = |X(ω)|ejφω (1)

In this work, we experiment with features extracted from

the phase spectrogram (ejφω). Specifically, log-CQT and LMS

features are extracted from the phase spectrogram in addition to

the traditional magnitude spectrogram .

VAE log-CQT refers to use Variational Autoencoder (VAE) to

extract genuine speech specific feature. All bona fide LA log-

CQT features are used to train a VAE, which encodes data to

32-dim vectors and then try to reconstruct. Those vectors are

our desired features, which are supposed to be meaningful on

genuine data and be randomly distributed on spoofing speech.

4. CNN based Spoofing Detection

Convolutional neural network (CNN) based models are used

as our classifiers because of their promising performance in

[17, 18]. In addition to the heavily investigated models such

as ResNet and LightCNN, the use of gated linear unit activation

within CNNs for spoofing detection is proposed.

4.1. ResNet

A standard 18-layer ResNet comprised of 8 residual blocks is

adopted as one of our single systems. The detailed configuration

can be found in Table 1.

4.2. ResNet with i-vector

In order to enhance the generalization capability of our neural

network model, i-vector is concatenated to the ResNet embed-

ding layer as an additional feature for joined training. Com-

pared to the naive GMM approach, i-vector is a factor anal-

ysis based method which can reduce the impact of spoof-

independent factors. The architecture is depicted in Figure 1.

In this work, the 400-dim i-vector extracted from log-CQT fea-

tures is concatenated to a 128-dim ResNet18 embedding.

Table 1: Detailed Configuration of ResNet model. T denotes

the frame number of input utterance and D denotes the feature

dimension. Kernel sizes are set to 3× 3.

Layers Output Size Channels Blocks

Conv T ×D 16 -

Res1 T ×D 16 2
Res2 T/2 × D/2 32 2
Res3 T/4 × D/4 64 2
Res4 T/8 × D/8 128 2
Average 128 - -

Linear (embedding) 128 - -

Output 2 - -

Figure 1: The proposed ResNet + i-vector architecture. The

inputs to the ResNet model and i-vector extractor are features

(which are log-CQT + phase and log-CQT in this work, respec-

tively) extracted from the same utterance.

4.3. LightCNN with multi-task outputs

Following the best system in ASVspoof 2017 challenge [17], a

9-layer LightCNN with max filter map (MFM) activation func-

tion is proposed. The general architecture of LightCNN model

using multi-task outputs is shown in Table 2. The outputs of

FC8 output1 refer to the spoofing labels (1 bona fide node and 1

spoofing node), while the outputs of FC8 output2 are the replay

configuration labels (1 bona fide node and 9 replay configura-

tion nodes, seen in Section 5.1). The sum of the outputs in both

bona fide nodes is regarded as the detection score.

4.4. Context Gate CNN

In this work we further explore the capabilities of gated linear

unit (GLU) activations. This activation function has been used

in related tasks such as audio event detection (AED) [19], sound

event detection [20], speech recognition[21] as well as natural

language processing [22]. GLU can be seen as an alternative to

the MFM activation used in the LightCNN. In this work, GLU

halves the input tensor over the CNN filter dimension (B and

A) and uses one of those filters as weights and applies those

weights on the other f(A,B) = σ (A) × B (see Figure 2).

Here × is the Hadamard product of two tensors and σ is the

sigmoid activation function.

This activation acts as a context-gate for each filter, which

is the reason to denote this network as context gate CNN

(CGCNN). A single context gate of our network can be seen in

Figure 2. The context gate architecture in this work strictly fol-

lows our LCNN approach (see Table 2), however small changes
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Table 2: The LightCNN architecture of LightCNN model us-

ing multi-task outputs. The filter size, stride, and pad of Conv1

and MaxPool1 are (5 × 5, 1, 2) and (2 × 2, 2, 0), respectively.

Hyper parameters Ci(i = 1, 2, 3, 4, 5) is the number of out-

put channels in the i-th layer, which basically control the model

size. Along the T dimension, Statistics Pooling refers to mean

pooling (D/32× C5) or mean+std pooling (D/32× C5 × 2).

Layers Output Size

input T ×D × 1
Conv1+MFM1+MaxPool1 T/2 × D/2 × C1

Block2(C1,C2,MFM) T/4 × D/4 × C2

Block3(C2,C3,MFM) T/8 × D/8 × C3

Block4(C3,C4,MFM) T/16 × D/16 × C4

Block5(C4,C5,MFM) T/32 × D/32 × C5

StatisticsPooling6 D/32 × C5(×2)
FC7 128
FC8 output1 2
FC8 output2 10

Figure 2: A single context gate of our proposed context-gate

CNN.

were made: 1) The model only uses Block2 and Block3 with

GLUs in order to avoid over-fitting (C1 = 48, C2 = 96, C3 =
192). 2) No multi-task training was utilized. 3) Statistics Pool-

ing referred to mean pooling only.

Moreover, for the final system fusion of our LA submis-

sion, we also incorporated a bidirectional gated recurrent unit

(BGRU) model into the CGCNN model, further referred as

CGCRNN. This GRU model was fed abstract features from the

CGCNN and predicted posterior probabilities.

5. Experiments

Model training for all experiments was ran for at most 200

epochs using adam optimization where the model producing the

lowest cross-entropy loss on the held-out set was chosen for fi-

nal evaluation. Before training, we split the given train dataset

into a 90% training and 10% held-out cross-validation portion

in stratified fashion. Since the number of spoofed utterances

within the training data set is only a fraction of the bona fide

ones, one needs to ascertain that the trained model sees equally

many bona fide and spoofed utterances. Therefore we adopt

the use of random oversampling the minority class (bona fide)

during training.

5.1. Dataset and performance measures

All experiments were conducted on the ASVspoof 2019 dataset

respecting the official protocols on training/development divi-

sions. For the LA subtask, 2,580 genuine and 22,800 spoofed

speech utterances generated by one of 6 TTS/VC algorithms are

used for training. The same spoofing algorithms in training set

are used to create the development set, while the algorithms to

generate the evaluation dataset are different. For PA task, the

training set contains 5,400 genuine speech and 48,600 replay

spoofing speech comprising 9 different replay configurations (3

categories of attacker-to-speaker recording distance times 3 cat-

egories of loudspeaker quality). The evaluation set for PA task

has the same replay spoofing manner as training and develop-

ment data, with different acoustic configurations. More details

of the dataset can be found in ASVspoof 2019 evaluation plan1.

To evaluate the performance of countermeasure, minimum

tandem detection cost function (t-DCF) [23] is adopted as the

primary performance metric, while equal error rate (EER) is

used as a secondary metric.

5.2. Evaluation on the LA task

The components of our submitted system and their performance

on development set is depicted in Table 3. Our single Context

Gate CNN system with phase + log-CQT feature reaches 0.034

and 1.09 in min-tDCF and EER, respectively. By fusing all sub-

systems together, better performance can be achieved, resulting

in 0.027 and 0.90 in min-tDCF and EER, respectively. The fu-

sion system is submitted as our primary system.

Table 3: Performance comparison of the components of our

submitted system on development set for LA subtask. “+” mark

denotes concatenating features into a multi-channel input.

Model Feature min-tDCF EER

CGCNN VAE log-CQT+log-CQT 0.056 1.84

CGCNN Phase+log-CQT 0.034 1.09

CGCRNN VAE log-CQT+log-CQT 0.059 1.76

ResNet18 VAE log-CQT+log-CQT 0.040 1.41

ResNet18 Phase+log-CQT 0.051 1.53

ResNet18IVec Phase+log-CQT 0.087 2.62

Fusion - 0.027 0.90

Figure 3 illustrates the detailed results on different spoofing

attacks. Although the baseline system (CQCC-GMM) achieves

great results on specific spoofing types such as A01 and A02, it

fails on most unknown spoofing attacks, potentially indicating

an over-fitting problem. In comparison, our proposed system is

more robust, resulting in evenly distributed low EERs and min-

tDCFs on all spoofing conditions. Table 4 displays the results of

the LA subtask. Our proposed system achieves the 5th position.

5.3. Evaluation on the PA task

OpenSLR262, a simulated room impulse response database, is

used for data augmentation for the PA task. Specifically, for

each genuine speech in the training set, 20 randomly-chosen

room impulse response are added. Thus a total number of

108,000 RIR replicas are obtained.

In order to avoid potential over-fitting, 2 different settings

of hyper parameters Ci(i = 1, 2, 3, 4, 5) are adopted for the

1Refer to http://www.asvspoof.org/asvspoof2019/

asvspoof2019_evaluation_plan.pdf for details.
2Refer to http://www.openslr.org/26/ for details.
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Figure 3: Performance comparison between the baseline system

(red) and our proposed system (blue) on different types of spoof-

ing attacks for the LA subtask. A01 to A06 are known spoofing

algorithms seen in the development set, while A07 to A19 are

unknown spoofing algorithms in the evaluation set.

Table 4: Primary submission results on the evaluation set for

LA subtask in ASVspoof 2019 Challenge. The result indicated

in bold is our submission.

ranking team min-tDCF EER

1 T05 0.0069 0.22

2 T45 0.0510 1.86

3 T60 0.0755 2.64

4 T24 0.0953 3.45

5 T50 0.1118 3.56

multi-task LightCNN (LightCNN-MT) models. The larger one

(LightCNN-MT-L) uses (48,96,192,128,128), while the smaller

one (LightCNN-MT-S) uses (16,32,64,48,48). Furthermore,

both mean pooling (denoted as µ) and mean+std (denoted as

µσ) pooling are used, leading to 4 different models totally. LMS

feature is used as input to our primary system, which is the score

fusion of those 4 sub-models shown in Table 5.

Table 5: Performance of the 4 sub-models, primary as well as

the constrastive submission on the development set for the PA

subtask. µ indicates the mean pooling while σ refers to the

pooled standard deviation.

Model Feature min-tDCF EER

LightCNN-MT-L-µ LMS 0.0180 0.59

LightCNN-MT-L-µσ LMS 0.0189 0.71

LightCNN-MT-S-µ LMS 0.0235 0.88

LightCNN-MT-S-µσ LMS 0.0221 0.79

Fusion (above 4) - 0.0108 0.38

CGCNN log-CQT 0.0092 0.35

CGCNN (RIR) log-CQT 0.0078 0.31

Fusion (above 2) - 0.0049 0.16

Interestingly, our contrastive submission outperformed our

primary submission on the evaluation set. Both of which signif-

icantly outperformed the baseline CQCC-GMM model in every

replay configuration, shown in Figure 4. The contrastive model

is a two way CGCNN fusion using the log-CQT feature - one

being trained on the standard PA train set, while the other was

trained on the augmented RIR data.

Table 6 displays the PA subtask results. Our primary sys-

Figure 4: Performance comparison of the baseline (red), our

primary submission (blue), and our contrastive submission

(green) for PA subtask.

tem achieves the 8th position, while our contrastive submission

achieves a comparable performance to the 3rd position.

Table 6: Primary submission results on the evaluation set for

PA subtask. The result indicated in bold is our primary sub-

mission. The result indicated as * is our submitted contrastive

model composed of a two way context-gate CNN fusion.

ranking team min-tDCF EER

1 T28 0.0096 0.39

2 T45 0.0122 0.54

* T50 0.0137 0.54

3 T44 0.0161 0.59

4 T10 0.0168 0.66

5 T24 0.0215 0.77

6 T53 0.0219 0.88

7 T17 0.0266 0.96

8 T50 0.0350 1.16

6. Conclusion

In this paper, we investigated multiple CNN based approaches,

namely ResNet, LightCNN and most notably CGCNN for the

ASVspoof 2019 challenge. Standard LMS as well as log-CQT

features were used in conjunction with a newly uncertainty

driven VAE model in order to ascertain robustness on devel-

opment as well as evaluation subsets. Our results show that

context-gated CNN networks are viable for both, logical and

physical, scenarios. The proposed CGCNN model is shown to

be reliable for both tasks. Our submitted system on the LA task,

composed of a ResNet and CGCNN fusion, achieves a t-DCF

of 0.027 on the development set and the 5th position on the eval-

uation set. On the other hand, our submission to the PA task, a

LightCNN fusion, resulted in a t-DCF of 0.0108 on the devel-

opment set and the 8th position on the evaluation set. Further-

more, our contrastive submission, a two way CGCNN fusion,

outperformed our primary submission, achieving a comparable

performance to the 3rd position.
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