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Abstract

Children’s speech recognition remains a big challenge for auto-

matic speech recognition. Due to the more difficult process and

higher cost on data collection, most current ASR systems are

optimized only using lots of adult speech with limited or even

none children’s speech. Accordingly, the acoustic mismatch be-

tween children’s and adult speech is the primary reason for the

ASR performance degradation when facing children’s speech.

To overcome this problem, we proposed several approaches to

improve children’s speech recognition without using any chil-

dren’s speech data. A better utilization strategy on prosody-

based features is developed. First, pitch and prosody mod-

ification is explored in both training and testing respectively,

which can significantly reduce the mismatch between two types

of speech. Furthermore, joint-decoding with both the prosody

modified speech and the original speech is designed to get a

more robust performance on both children’s and adult speech.

Experiments are evaluated on a Mandarin speech recognition

task, with only 400-hour adult speech in the training. The re-

sults show that our proposed method can obtain a large gain

on children’s speech, with relative ∼20% WER reduction com-

pared to the baseline, and also no obvious degradation is ob-

served on the adult speech for the proposed system.

Index Terms: children’s speech recognition, pitch feature,

prosody feature, joint decoding

1. Introduction

In recent decades, a great number of methods have been pro-

posed for improving the performance of automatic speech

recognition (ASR) system[1, 2, 3, 4]. With a large amount of

training data and advanced model structure, significant progress

has been made in ASR system developing. However, one chal-

lenge that still remains for modern ASR systems is children’s

speech recognition. As far as we know, compared to adult ASR

system, fewer efforts have been taken on children’s ASR system

in previous researches.

One way to improve the ASR systems’ performance for

children is introducing more children’s corpus in training [5].

Since the DNN based ASR systems [6] are driven by data, it

is commonly recognized that with a larger amount of training

data, the performance of ASR systems is even better. How-

ever, most of the public corpora are collected with adult speak-

ers. Children’s corpora for ASR training is difficult to be col-

lected, usually smaller than that of adults [7]. Another way is

by reducing the acoustic mismatch between children’s and adult

voice by algorithms. There are some forms of these acous-

tic mismatches [8, 9, 10]. The acoustic mismatch is mainly
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because of that children’s vocal tract is shorter than that of

adults [11, 12, 13, 14]. The mismatch between children’s and

adult voice leads to the performance degradation when applying

the ASR system trained with an adult corpus to the children’s

speech.

In most practical applications, the costs on time and re-

sources are very large to obtain well-labeled children corpus,

especially for some low-resource languages. Accordingly, in

this paper, we tried to solve the challenge through the second

approach mentioned above, reducing the acoustic mismatch be-

tween children’s and adult speech using algorithms.

One of the major acoustic mismatches is that children’s fun-

damental frequency is usually higher than that of adults [14].

Focusing on the fundamental frequency mismatch, a prosody

modification method is proposed to reduce the mismatch. We

perform the prosody modification method in two ways. The first

approach is making prosody modification on adult training cor-

pus, make the acoustic features closer to children’s. The second

approach, on the contrary, is performing prosody modification

on children’s speech directly when testing.

In practice, the above prosody modification method works

well on improving children’s speech recognition performance,

and a significant improvement in children’s speech recognition

is obtained. However, this method also leads to performance

degradation in adult speech. To overcome this shortcoming and

make the system more robust, a joint decoding method is then

introduced, which can further improve the system performance.

The joint decoding method do not need to retrain the built sys-

tem, which is flexible and low cost.

This paper is organized as follows. In section 2, the prosody

features are introduced for children’s speech recognition, in-

cluding the prosody modification and pitch feature. In section 3,

the joint decoding architecture with different prosody modifica-

tions is designed. The detailed experimental results and analysis

are described in section 4, and conclusions are finally given in

section 5.

2. Prosody Feature for Children’s Speech

2.1. Motivation

As mentioned in section 1 , the fundamental frequency of chil-

dren’s speech is higher than that of adults. The range of adult

fundamental frequency, for male is usually from 85 Hz to 180
Hz, and for female is usually from 165 Hz to 255 Hz [15, 16].

The range of children’s fundamental frequency is from about

200 Hz to 350 Hz[17]. Thus, adding prosody-related features

into the system may improve system performance. In this pa-

per, two types are explored, including prosody modification by

tuning the fundamental frequency, and explicitly using the pitch
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feature.

2.2. Prosody Modification

The prosody modification1 procedure that we use can be de-

scribed as the following steps:

Firstly, by resampling the original audio signal f(t) with

factor λ, we get a new signal f(λt). Denote Fourier trans-

form of f(t) as f̂(ω). Then, the Fourier transform of f(λt)

can be presented as λ−1f̂(λ−1ω). This resampling procedure

shifts frequency components and changes speech duration at

the same time. For example, the fundamental frequency of

adult speech can be tuned up through downsampling the origi-

nal speech, while the speech duration will become shorter. Sec-

ondly, since we assume that the speech duration of children and

adults are the same, we then perform the WSOLA[18] proce-

dure on the frequency-tuned signals. WSOLA is a high-quality

time-scale modification algorithm based on waveform similar-

ity, which keeps the fundamental frequency of the original sig-

nal unchanged.

In order to enhance the performance of ASR system which

is trained with adult corpus to recognize children’s speech, we

make the prosody modification to reduce the acoustic mismatch

between adult and children’s speech. We propose two prosody

modification methods to eliminate the mismatch between the

adult speech in the training set and the children’s speech in the

evaluation set. One is to tune up the prosody of the adult speech

in the training corpus and to retrain the acoustic model with the

prosody-modified corpus. The other way is to tune down the

prosody of the children’s speech in the evaluation directly.

SoX [19] is an audio manipulation tool, and we used it to

make prosody modification. For example, to tune up prosody

of an utterance, we can downsample the original audio with

the factor λ by using speed command of SoX. This procedure

changes the length of the original signal at the same time, in

other words, the speaking rate becomes higher. For the sec-

ond procedure we mentioned early in this section, we use the

tempo command provided by SoX which is implemented based

on WSOLA[18], to modify the tempo of the audio signal while

keeping the original pitch and spectral unchanged. Combining

these procedures, we can finish prosody modification without

changing the speaking rate.

Fig.1 shows the comparison of the spectrograms of the orig-

inal adult speech and the related prosody-tuned-up speech. This

utterance is randomly picked from the adult training corpus.

The original speech is downsampled with λ = 1.1. WSOLA

algorithm is then performed to make the duration the same as

the original signal. From these two spectrogram illustrations, it

can be observed that the pitch and formant frequencies in figure

(b) are higher than those in figure (a).

2.3. Pitch Feature

The motivation of adding extra pitch features in optimizing chil-

dren’s speech recognition can be expressed in two ways. (1) On

the one hand, the pitch feature is a presentation for the auditory

perception of tone [20]. In the process of prosody modification

proposed in section 2.2, the prosody of speech is modified. Intu-

itively, extracting pitch features helps the DNN acoustic model

explicitly focus more on the prosody. (2) On the other hand, in

[21], an effective pitch extraction algorithm is proposed. In that

algorithm, apart from pitch features, the probability of voicing

1The proposed method does not affect some factors of the prosody,
however in this paper, we still call it prosody modification.

Figure 1: The comparison of the spectrograms of the original

adult speech (a) and the prosody-tuned-up speech (b).

feature and the delta-pitch feature will also be extracted. Pre-

vious works [21, 22] have shown that adding extra pitch fea-

tures can improve the performance on tonal languages, such as

Mandarin and Cantonese ASR. In this paper, children’s speech

recognition with Mandarin is explored and evaluated.

3. Joint Decoding with Prosody
Modification

3.1. Shortcoming of prosody modification

Prosody modification method can get a significant performance

improvement on children’s speech. However, it is usually ob-

served that there may be a performance degradation on adult

evaluation set if we train the acoustic model with prosody tuned

training data or modifying prosody on children’s testing speech

directly. The reason may be that the prosody modification sim-

ply applied to the training set or testing set, can reduce the

acoustic mismatch for children’s speech, but in contrast, it may

increase the mismatch for adult speech.

3.2. Joint Decoding

To overcome this shortcoming, we propose a joint decoding ar-

chitecture, which is much easier to apply to the already trained

ASR system. Inspired by the previous work in acoustic sys-

tem combination [3, 23], during evaluation, both the original

speech and the prosody-modified speech are forwarded through

the acoustic model as Fig.2 shows. The acoustic model gen-

erates two acoustic likelihood at the same time, then the two

likelihood is combined by the weight of α. Denoting o and ô

as the original and the prosody tuned acoustic features, the new

likelihood of DNN output can be expressed as:

pjoint(x|o) = αp(x|o) + (1− α)p(x|ô) (1)

The joint acoustic likelihood pjoint(x|o) is then passed

through the standard decoding pipeline to obtain the final re-

sults. This joint decoding framework with different prosody

modification can take the advantages from both the original

and new speech, which can further enhance the system robust-

ness and improve the performance for both adult and children’s

speech.
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Figure 2: Joint decoding with the original and prosody modified

speech

4. Experiments

4.1. Experimental setup and baseline system

A 400-hour hand-transcribed Mandarin adult corpus is used to

train our baseline system. There are 481K utterances with an

average duration of 3 seconds in the corpus, 95% of which are

used as training set and the rest 5% are used as the validation

set. There are two testing sets to evaluate our proposed methods.

The first testing set containing 15626 utterances of children’s

speech is used to evaluate the system performance on children’s

speech recognition task. The other testing set containing 8272
utterances of adult speech is used to evaluate the performance

on adult speech recognition task.

Gaussian mixture model based hidden Markov models

(GMM-HMM) is first trained, which consists of 9663 clustered

states. Then, a forced-alignment is performed over the 400-hour

corpus using the GMM-HMM model to get state level labels.

The Kaldi toolkit [24] is used to build the deep neural network

(DNN) acoustic models. The DNN contains 5 hidden layers

with 2048 units in each layer, and the ReLU activation function

is used after each layer; The input layer has 1320 units since

we use 40-dimension filter bank features with delta order 2 and

±5 frame expansion; The output layer consisted of 9663 units

corresponding to GMM-HMM clustered states.

Word error rate (WER) on children’s and adult testing set

is listed in Table 1 as the first line. It is observed that the chil-

dren’s speech is much more difficult to be recognized than adult

speech, and the performance gap is large when using the tradi-

tional acoustic modeling method only with adult speech.

4.2. Pitch feature

3-dimension pitch features, including probability of voicing fea-

ture, pitch feature and pitch-delta feature, are extracted follow-

ing the recipe in [21] with Kaldi toolkit. The pitch features are

combined with the 40-dimension filter bank features. Exper-

iment setup is similar to that we mentioned in section 4.1, 5

hidden layers with 2048 units per layer is used in DNN. The

activation function is ReLU. For the input layer, 43-dimension

features consisting of filter bank and pitch with delta order 2 and

±5 frame expansion is used. So the input layer in this setup con-

tains 1419 units considering the addition of 3-dimension pitch

features, which is different from the setup in section 4.1.

As Table 1 shows, assisted by the pitch feature, there is a

consistent improvement on both the adult and children’s speech.

Table 1: WER (%) comparison of baseline systems with/without

pitch feature on adult/child testing set

Adult Child

baseline 16.26 29.23

+ pitch feature 15.65 28.66

4.3. Prosody modification on training

The prosody modification procedure that mentioned in sec-

tion 2.2 is performed on the 400-hour adult corpus with factor

λtrain = {1.05, 1.1, 1.15}. Then the acoustic model trained

with the prosody-modified adult corpus is evaluated on chil-

dren’s speech and adult speech. The model configuration and

training procedure are exactly the same as the baseline, and

the performance comparison of the proposed approach using

prosody modification in training is listed in Table 2.

Table 2: WER (%) comparison of the system trained with the

prosody-modified training set using different λtrain parameters

λtrain 1.0 1.05 1.1 1.15

Adult 16.26 17.04 20.10 25.34

+ pitch 15.65 16.54 19.26 24.56

Child 29.23 26.47 25.81 26.13

+ pitch 28.66 26.21 25.28 25.72

From Table 2, it can be seen that when λtrain = 1.1, the

performance of children’s speech recognition achieves the best

position. However, the system trained only with prosody mod-

ified corpus suffers performance degradation while it is eval-

uated on adult speech. On the one hand, this phenomenon

shows that the prosody modification on adult training corpus

indeed works for improving children’s speech recognition. On

the other hand, this simple prosody modification on training

corpus leads to acoustic mismatches between real adult speech

and prosody modified adult speech, which causes performance

degradation on adult speech.

To reduce this degradation, the prosody modified training

corpus is combined with the original training corpus, getting

an 800-hour training corpus. The new system trained with

the 800-hour corpus significantly reduces the impact on adult

speech recognition shown as Table 3. It shows that by com-

bining the original training corpus with the prosody modified

corpus, 15% relative WER reduction can be obtained for chil-

dren’s speech, and without an obvious performance degradation

on adult speech.

4.4. Prosody modification on testing

Prosody modification on testing corpus is more flexible in prac-

tice. The model is not re-trained and it can be performed on
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Table 3: WER (%) comparison of the systems trained with both

the prosody-modified training set and the original training set

using λtrain = 1.1

λtrain/hours 1.0/400hr 1.1/400hr 1.0&1.1/800hr

Adult 16.26 20.10 16.29

+ pitch 15.65 19.26 15.77

Child 29.23 25.81 25.51

+ pitch 28.66 25.28 24.93

the testing directly with the original adult model. The pro-

posed prosody modification on testing is evaluated on the orig-

inal 400-hour adult trained systems. The modification factors

λtest = {0.86, 0.88, 0.9, 0.92, 0.94} have been compared. As

Table 4 shows, the similar conclusion as that in section 4.3 is

observed. The performance is significantly improved on chil-

dren’s speech with prosody modification on testing speech di-

rectly, and it can achieve the best position when λtest = 0.9. In

contrast, the accuracy on adult speech degrades gradually with

the reduced prosody modification factors.

Table 4: WER (%) comparison of the prosody modification on

testing speech directly. The ASR system is built on the original

400-hour adult corpus.

λtest 0.86 0.88 0.9 0.92 0.94 1.0

Adult 26.77 23.32 20.47 18.50 17.56 16.26

+ pitch 25.19 21.98 19.42 17.83 16.88 15.65

Child 27.48 27.07 26.89 27.00 27.55 29.23

+ pitch 26.70 26.29 26.06 26.20 26.76 28.66

4.5. Joint decoding with prosody modified speech

In this subsection, the proposed joint decoding method for chil-

dren’s speech recognition is evaluated. The DNN acoustic

model is trained with 400-hour adult corpus. In the evalua-

tion, the prosody modification method is first performed with

λtest = 0.9, and both the modified speech and the original

speech are fed into the acoustic model. The two streams of like-

lihood generated from the DNN acoustic model are then com-

bined following the method described in section 3. The decod-

ing pipeline is the same as the baseline setup.

Table 5: WER (%) comparison of the proposed joint decoding

with the original and prosody modified testing speech. The ASR

system is built on the original 400-hour adult corpus.

λtest 1.0 0.9 joint

Adult 16.26 20.47 16.53

+ pitch 15.65 19.42 15.85

Child 29.23 26.89 25.73

+ pitch 28.66 26.06 25.02

The experimental results are illustrated in Table 5, and the

acoustic model is built on the original 400-hour adult corpus. It

shows that the proposed joint decoding can further improve the

system performance for the children’s speech when compared

to the direct prosody modification on testing speech in Table 4.

On the other hand, the accuracy on adult speech is also boosted,

and the performance degradation compared to the baseline adult

speech is very small when performing joint decoding.

4.6. Evaluation summary of the proposed approaches

Finally, we tried to combine the different methods proposed in

this paper to construct our best children’s speech recognition

system, and the performance comparison is summarized in Ta-

ble 6.

Table 6: WER (%) comparison of the newly proposed methods

for children’s speech recognition.

System
WER

Adult Child

Baseline 16.26 29.23

+ pitch 15.65 28.66

++ prosody modified on test 19.42 26.06

+++ joint decoding 15.85 25.02

++ prosody modified on train 15.77 24.93

+++ joint decoding 15.79 23.71

The results show that all the newly proposed approaches

can improve children’s speech recognition significantly. Dif-

ferent methods utilize the prosody knowledge on the different

levels, and these individual techniques can be combined to get

a further improved system. Our final system can obtain a large

gain on children’s speech, with relative ∼20% WER reduction,

and still keeps the same high-performance on adult speech com-

pared to the baseline.

5. Conclusions

In this paper, we explored several ways on the prosody usage

to improve the speech recognition system on children’s speech,

only using the adult data in training. A better utilization strat-

egy on prosody-based features is developed. First, pitch and

prosody modification is explored in both training and testing

respectively, which can significantly reduce the mismatch be-

tween two types of speech, and an obvious improvement in

children’s speech can be obtained. Furthermore, joint-decoding

with both the prosody modified speech and the original speech

is designed to get a more robust performance on both children’s

and adult speech. The final system, built with all the proposed

technologies, can obtain a large improvement on Mandarin chil-

dren’s speech recognition, and also no obvious degradation on

WER is observed for adult speech.

6. Acknowledgement

This work was supported by the China NSFC projects (No.

61603252 and No. U1736202). Experiments have been carried

out on the PI supercomputer at Shanghai Jiao Tong University.

7. References

[1] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer,
G. Zweig, X. He, J. Williams et al., “Recent advances in deep
learning for speech research at Microsoft,” in 2013 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing.
IEEE, 2013, pp. 8604–8608.

[2] M. Bi, Y. Qian, and K. Yu, “Very deep convolutional neural net-
works for LVCSR,” in Sixteenth Annual Conference of the Inter-

national Speech Communication Association, 2015.

[3] Y. Qian, M. Bi, T. Tan, and K. Yu, “Very deep convolutional neural
networks for noise robust speech recognition,” IEEE/ACM Trans-

actions on Audio, Speech, and Language Processing, vol. 24,
no. 12, pp. 2263–2276, 2016.

3449



[4] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in Sixteenth Annual Conference of the International Speech

Communication Association, 2015.

[5] H. Liao, G. Pundak, O. Siohan, M. K. Carroll, N. Coccaro, Q.-M.
Jiang, T. N. Sainath, A. Senior, F. Beaufays, and M. Bacchiani,
“Large vocabulary automatic speech recognition for children,” in
Sixteenth Annual Conference of the International Speech Commu-

nication Association, 2015.

[6] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep
neural networks for acoustic modeling in speech recognition,”
IEEE Signal processing magazine, vol. 29, 2012.

[7] A. Batliner, M. Blomberg, S. D’Arcy, D. Elenius, D. Giuliani,
M. Gerosa, C. Hacker, M. Russell, S. Steidl, and M. Wong, “The
PF STAR children’s speech corpus,” in Ninth European Confer-

ence on Speech Communication and Technology, 2005.

[8] J. Fainberg, P. Bell, M. Lincoln, and S. Renals, “Improving chil-
dren’s speech recognition through out-of-domain data augmenta-
tion.” in INTERSPEECH, 2016, pp. 1598–1602.

[9] S. Shahnawazuddin, A. Dey, and R. Sinha, “Pitch-adaptive front-
end features for robust children’s ASR.” in INTERSPEECH, 2016,
pp. 3459–3463.

[10] R. Sinha and S. Shahnawazuddin, “Assessment of pitch-adaptive
front-end signal processing for childrens speech recognition,”
Computer Speech & Language, vol. 48, pp. 103–121, 2018.

[11] S. Ghai, “Addressing pitch mismatch for children’s automatic
speech recognition,” Ph.D. dissertation, 2011.

[12] M. Russell and S. DArcy, “Challenges for computer recognition
of childrens speech,” in Workshop on Speech and Language Tech-

nology in Education, 2007.

[13] M. Gerosa, D. Giuliani, S. Narayanan, and A. Potamianos, “A re-
view of ASR technologies for children’s speech,” in Proceedings

of the 2nd Workshop on Child, Computer and Interaction. ACM,
2009, p. 7.

[14] S. Lee, A. Potamianos, and S. Narayanan, “Acoustics of childrens
speech: Developmental changes of temporal and spectral parame-
ters,” The Journal of the Acoustical Society of America, vol. 105,
no. 3, pp. 1455–1468, 1999.

[15] I. Titze, “Principles of voice production. prentice-hall,” Engle-

wood Cliffs, NJ, 1994.

[16] R. J. Baken and R. F. Orlikoff, “Clinical measurement of speech
and voice. london,” Cengage Learning, pp. 561–570, 2000.

[17] I. Chandra Yadav, A. Kumar, S. Shahnawazuddin, and G. Pradhan,
“Non-uniform spectral smoothing for robust children’s speech
recognition,” 09 2018, pp. 1601–1605.

[18] W. Verhelst and M. Roelands, “An overlap-add technique based on
waveform similarity (WSOLA) for high quality time-scale mod-
ification of speech,” in Acoustics, Speech, and Signal Process-

ing, 1993. ICASSP-93., 1993 IEEE International Conference on,
vol. 2. IEEE, 1993, pp. 554–557.

[19] “Sox, audio manipulation tool,” saf, // http://sox.sourceforge.net/.

[20] D. Talkin, “A robust algorithm for pitch tracking (RAPT),” Speech

coding and synthesis, vol. 495, p. 518, 1995.

[21] P. Ghahremani, B. BabaAli, D. Povey, K. Riedhammer, J. Tr-
mal, and S. Khudanpur, “A pitch extraction algorithm tuned for
automatic speech recognition,” in 2014 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2014, pp. 2494–2498.

[22] H. C.-H. Huang and F. Seide, “Pitch tracking and tone features for
Mandarin speech recognition,” in 2000 IEEE International Con-

ference on Acoustics, Speech, and Signal Processing. Proceedings

(Cat. No. 00CH37100), vol. 3. IEEE, 2000, pp. 1523–1526.

[23] S. Kundu, G. Mantena, Y. Qian, T. Tan, M. Delcroix, and K. C.
Sim, “Joint acoustic factor learning for robust deep neural net-
work based automatic speech recognition,” in 2016 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2016, pp. 5025–5029.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in IEEE 2011 workshop

on automatic speech recognition and understanding, no. EPFL-
CONF-192584. IEEE Signal Processing Society, 2011.

3450


