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Abstract
End-to-end models for monaural multi-speaker automatic

speech recognition (ASR) have become an important and in-

teresting approach when dealing with the multi-talker mixed

speech under cocktail party scenario. However, there is still

a large performance gap between the multi-speaker and single-

speaker speech recognition systems. In this paper, we propose

a novel framework that integrates teacher-student training with

the attention-based end-to-end ASR model, which can do the

knowledge distillation from the single-talker ASR system to

multi-talker one effectively. First the objective function is re-

vised to combine the knowledge from both single-talker and

multi-talker labels. Then we extend the original single atten-

tion to speaker parallel attention modules in the teacher-student

training based end-to-end framework to boost the performance

more. Moreover, a curriculum learning strategy on the train-

ing data with an ordered signal-to-noise ratios (SNRs) is de-

signed to obtain a further improvement. The proposed methods

are evaluated on two-speaker mixed speech generated from the

WSJ0 corpus, which is commonly used for this task recently.

The experimental results show that the newly proposed knowl-

edge transfer architecture with an end-to-end model can sig-

nificantly improve the system performance for monaural multi-

talker speech recognition, and more than 15% relative WER

reduction is achieved against the traditional end-to-end model.

Index Terms: multi-talker speech recognition, cocktail party

problem, attention-based end-to-end, knowledge distillation,

teacher-student learning

1. Introduction

Recent advances in deep learning have proved that the single-

speaker automatic speech recognition (ASR) systems can be

trained in the end-to-end manner [1, 2, 3, 4], directly predicting

the character sequences. In the end-to-end speech recognition

model, a single deep neural network folds the acoustic model

(AM), pronunciation and language model (LM) so that they can

be optimized simultaneously, which are three individual parts in

the traditional deep neural network (DNN) and hidden Markov

model (HMM) based hybrid ASR systems [5, 6, 7]. In the past

few years, various end-to-end (E2E) models have been devel-

oped and they can be categorized into connectionist temporal

classification (CTC) based models [8, 9], sequence to sequence

(S2S) based models [10, 11] and the models combining CTC

and S2S [1]. Even though much progress has been achieved in

speech recognition when the speech is involved with stationary

noise, it is still challenging in the scenario with nonstationary

noise, such as reverberation and speech from other speakers,

which is known as the cocktail party problem.

In this work, we aim to address the monaural multi-speaker

speech separation and recognition problem. A large amount

of research has been done on this problem in recent years. In

[12, 13], a method called deep clustering (DPCL) was proposed

to separate the mixed speech by mapping each time-frequency

(T-F) unit of the signal into a high-dimensional embedding

space using a neural network. Then the clustering is performed

in the embedding space so that the units from the same dom-

inant speaker are close and farther away otherwise. Another

method, called permutation invariant training (PIT), was pro-

posed for both the speech separation [14, 15] and the recogni-

tion [16, 17, 18, 19, 20] tasks to train a deep neural network by

optimizing the objective of the best output-target assignment

at the utterance level. In [21, 22, 23], an end-to-end multi-

speaker speech recognition model was brought up using the

joint CTC/attention-based encoder-decoder framework [1, 2],

in which the encoder first separates the mixed speech and then

the attention-based decoder generates the output sequences.

In this paper, we proposed to exploit the knowledge distilla-

tion [24] in the end-to-end (E2E) multi-speaker speech recogni-

tion system. Most conventional knowledge distillation methods

were explored as a compression method by teaching a small

model with labels from a more complicated model [25, 26]. In

this work, however, the knowledge distillation technique is used

to take advantage of the soft label vectors generated from single-

speaker model in order to improve the performance of the multi-

speaker speech recognition system [20]. Unlike the “one-hot”

label vectors, the soft label vector is a less confidential repre-

sentation thus brings the regularization property to the model.

In addition to the information from texts, the soft label vectors

introduce supplementary information from the clean signal, so

the multi-speaker model can be trained better. Moreover, we

adopted the curriculum learning [27, 28] technique to further

improve the performance.

The remainder of the paper is organized as follows: In Sec-

tion 2, the end-to-end monaural multi-speaker ASR model is de-

scribed. In Section 3, we present the knowledge distillation and

the curriculum learning proposed in end-to-end multi-speaker

ASR. In Section 4, we evaluate the proposed approaches on the

2-speaker mixed WSJ0 dataset, and the experimental results and

analysis are given. Finally the paper is concluded in Section 5.

2. End-to-End Multi-speaker Joint
CTC/Attention-based Encoder-Decoder

The end-to-end speech recognition model used in our work

is the joint CTC/attention-based encoder-decoder proposed in

[1, 2, 29]. The advantage of this model is that it uses CTC as a

secondary task to enhance the alignment ability of the attention-

based encoder-decoder. Later, this model was modified to be fit-

ted in the multi-speaker scenario [22, 23] by introducing a sep-
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aration stage in the encoder. The input speech mixture is first

explicitly separated into multiple sequences of vectors in the en-

coder, each representing a speaker source. These sequences are

fed into the decoder to compute the conditional probabilities.

O denotes the input speech mixture of S speakers. The en-

coder consists of three stages: EncoderMix, EncoderSD and

EncoderRec. EncoderMix, the mixture encoder, encodes O as

an intermediate representation H. Secondly, the representation

H is processed by S independent speaker-different (SD) en-

coders, EncoderSD, with S outputs Hs (s = 1, · · · , S), each

corresponding to the representation of one speaker. In the last

stage, for each stream s (s = 1, · · · , S), EncoderRec trans-

forms the feature sequences Hs to high-level representations

Gs. The encoder can be written as the following steps:

H = EncoderMix(O) (1)

H
s = EncoderSD

s(H), s = 1, · · · , S (2)

G
s = EncoderRec(H

s), s = 1, · · · , S (3)

A CTC objective function is concatenated after the encoder,

whose benefits come in with two folds. The first is to train the

encoder of the sequence-to-sequence model as an auxiliary task

[1, 2, 29]. The second is that in the multi-speaker case, the CTC

objective function is used to perform the permutation-free train-

ing shown as in Eq.4, which is also referred to as permutation

invariant training (PIT) in [30, 14, 16, 17, 18, 19, 20].

π̂ = argmin
π∈P

∑

s

Lossctc(Y
s
,R

π(s)), (4)

where Ys is the output sequence variable computed from the

representation Gs, π(s) is the s-th element in a permutation π

of {1, · · · , S}, and R is the reference labels for S speakers.

Later, the permutation π̂ with the minimum CTC loss is used

for the reference labels in the attention-based decoder in order

to reduce the computational cost.

An attention-based decoder network is used to decode each

stream Gs and generates the corresponding output label se-

quences Ys. For each pair of representation and reference label

index (s, π̂(s)), the decoding process is described as the fol-

lowing equations:

patt(Y
s,π̂(s)|O) =

∏

n

patt(y
s,π̂(s)
n |O, y

s,π̂(s)
1:n−1) (5)

c
s,π̂(s)
n = Attentions(a

s,π̂(s)
n−1 , e

s,π̂(s)
n−1 ,G

s) (6)

e
s,π̂(s)
n = Update(e

s,π̂(s)
n−1 , c

s,π̂(s)
n−1 , y

π̂(s)
n−1) (7)

y
s,π̂(s)
n ∼ Decoder(cs,π̂(s)

n , y
π̂(s)
n−1) (8)

where c
s,π̂(s)
n denotes the context vector, e

s,π̂(s)
n is the hidden

state of the decoder, and r
π̂(s)
n is the n-th element in the refer-

ence label sequence. During training, the reference label r
π̂(s)
n−1

in R is used as a history in the manner of teacher-forcing, in-

stead of y
π̂(s)
n−1 in Eq.7 and Eq.8. Eq.5 defines the probability of

the target label sequence Y = {y1, · · · , yN} that the attention-

based encoder-decoder predicts, in which the probability of yn
at n-th time step is dependent on the previous sequence y1:n−1.

The final loss function is defined as

Lmtl = λLctc + (1− λ)Latt, (9)

Lctc =
∑

s

Lossctc(Y
s
,R

π̂(s)), (10)

Latt =
∑

s

Lossatt(Y
s,π̂(s)

,R
π̂(s)), (11)

where λ is the interpolation factor, and 0 ≤ λ ≤ 1.

3. Knowledge Distillation for End-to-End
Multi-speaker ASR

In this section, we introduce several techniques to improve the

end-to-end multi-speaker ASR system. First, we describe a

method called speaker parallel attention that is beneficial for

the separation proposed in [23]. Next, we propose to use the

teacher-student learning for the knowledge distillation. Third,

the curriculum learning is adopted to dig the information under-

lying the data to improve the training.

3.1. Speaker Parallel Attention

An modification of the attention-based decoder was proposed in

[23], called the speaker parallel attention. The motivation is to

compensate for the separation ability of the encoder, enhancing

the separation performance of the model. The idea was to use

individual attention modules for different streams, by virtue of

the selective property to filter the noisy information. And the

change is simply in the Equation 6:

c
s,π̂(s)
n , a

s,π̂(s)
n = Attentions(a

s,π̂(s)
n−1 , c

s,π̂(s)
n−1 ,G

s) (12)

3.2. Knowledge Distillation

Compared with the hard targets used in the cross entropy crite-

rion, it is claimed that soft targets can provide additional helpful

information, leading to better performance [24]. In the multi-

speaker speech recognition tasks, we can also use this method

to improve the accuracy of attention-based decoder network. To

obtain the soft label vectors, the parallel individual speaker’s

speech goes through the model trained with the speech that con-

tains only one speaker. The soft label vectors contain supple-

mentary information hidden by the overlapping speech as well

as the insight from the single-speaker model which has better

modelling ability.

The model architecture is shown in Fig.1. The mixed

speech and the corresponding individual speech are denoted as

O and Os (s = 1, · · · , S) respectively. Thus, the end-to-end

teacher model takes the source speech Os as the input to com-

pute teacher logits for each step in the target sequence. And

the corresponding outputs, denoted as Ys
T (s = 1, · · · , S), are

treated as the target distribution for the student model. Thus the

loss function for the teacher-student learning can be expressed

as the following:

Latt−CE =
∑

s

LossCE(Y
s,π̂(s)

,Y
π̂(s)
T ) (13)

where the knowledge distillation loss LossCE(Y
s,Y

π̂(s)
T )

after the attention-based decoder is computed as the cross en-

tropy between the predictions of the student model and the

teacher model, π̂ is the best permutation determined by the CTC

loss. The cross entropy loss can be written as

LossCE(Y
s
,Y

s
T ) = −

N∑

n=1

|C|∑

c=1

Q(ys
Tn = c|ys

T0:n−1,O
s; θT )

× logP (ys
n = c|ys

0:n−1,O; θ) (14)

where, θT corresponds to the parameters in the teacher model;

θ corresponds to the learning parameters in the student model;

Q(·) and P (·) represent the distributions for every speaker from

the teacher and student model respectively.

In this paper, we modified our loss function of the attention-

based decoder Latt. The new form is the weighted sum of the
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Figure 1: The proposed knowledge distillation architecture for

end-to-end multi-speaker speech recognition in the 2-speaker

case.

original loss based on cross entropy (CE) and the term based on

knowledge distillation loss, namely

L∗
att = ηLatt + (1− η)Latt−CE (15)

where η is the weight coefficient.

3.3. Curriculum learning

In previous works, the end-to-end multi-speaker ASR systems

were trained disregarding the similarities and differences un-

derlying the data. In some researches [27, 28], however, it is

claimed that the order of the data has an influence on the train-

ing process, called curriculum learning strategy. Thus, here we

would like to find a pattern from the data to make the train-

ing procedure more stable and to boost the performance. Ac-

cording to [19], one observation is that the signal-to-noise ra-

tio (SNR) between the overlapped speech has a great influence

on the separation performance. In utterances with small SNRs,

the speeches from different speakers are distorted with similar

energy. On the contrary, a large SNR means the speeches are

distorted in an unbalanced condition with one dominant speech.

In our work, we focus on the SNR level of the overlap-

ping speech, which is defined as the energy ratio between the

source speech from two speakers. Other factors may also be

used, but the methodology is the same. When generating the

mixed speech, the energy ratio is randomly selected in order to

simulate the real conditions. When the SNR is larger, the high

energy speech is clearer, but the speeches with lower energy are

ill behaved. On the contrary, when the SNR is smaller, each ut-

terance in the mixed speech can be recognized with similar per-

formance, thus the model can learn the knowledge from each

speakers. We rearranged the training data in the way described

in Algorithm 1. Specifically, in the beginning of training, we

iterate through minibatches in the training set in the ascending

order of the SNR of speech from speaker 1. Afterwards, the

training reverts back to the random order over minibatches.

Algorithm 1: Curriculum learning

1 Load the training dataset X;

2 Sort the training data in X in ascending order of the

SNR of utterances;

3 while model is not converged do

4 for each i in all minibatches of training data do

5 Feed minibatch i into the model and perform

gradient descent;

6 end

7 end

8 Shuffle the training data randomly and divide them into

minibatches;

9 Feed each minibatch into the model iteratively and

updata the model;

10 Repeat step 8 and step 9 until converge.

4. Experiments

4.1. Experimental Setup

To evaluate our proposed methods, we artificially generated the

single-channel two-speaker mixed signals based on the Wall

Street Journal (WSJ0) speech corpus [31], using the tool re-

leased by MERL1. The training, development and evaluation

data were generated from the WSJ0 SI-84, Dev93 and Eval92

respectively, and the durations of each dataset are as follows:

88.2 hr for training, 1.1 hr for development, and 0.9 hr for eval-

uation.

The input features are the 80-dimensional log-Mel filter-

bank coefficients with pitch features on each frame, concate-

nated with their delta and delta delta coefficients. All features

were extracted using the Kaldi toolkit [32] and normalized to

zero mean and unit variance.

In this work, the neural network models in different ap-

proaches have the same depth and similar size so that their per-

formance is comparable. The encoder consists of two VGG-

motivated CNN blocks and three bidirectional long-short term

memory recurrent neural networks with projection (BLSTMP),

while the decoder network has only one unidirectional long-

short term memory (LSTM) layer with 300 cells. All networks

were built based on the ESPnet [33] framework. The AdaDelta

optimizer [34] with ρ = 0.95 and ǫ = 1e-8 was used for training.

The interpolation factor λ in Eq.9 was set to 0.2 during training.

For teacher-student training, an end-to-end teacher model

was first trained on the original clean speech training dataset

from WSJ0. In our experiments, the WER of the teacher model

on WSJ0 Dev93 and Eval92 are 8.0% and 2.1% respectively.

Then we fed the mixed speech data and the corresponding in-

dividual speech data into the teacher-student module simulta-

neously. The best performance was achieved when the weight

coefficient η in Eq.15 was set to 0.5 in our experiments.

In the decoding phase, we combined both the joint

CTC/attention score and the score of the pretrained word-level

RNN language model (RNNLM), which has 1-layer LSTM

with 1000 cells and was trained on the transcriptions from WSJ0

SI-84, in a shallow fusion manner. The beam width was set to

30. The interpolation factor λ used during decoding was 0.3,

and the weight for RNNLM was 1.0.

1http://www.merl.com/demos/deep-clustering/create-speaker-
mixtures.zip
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4.2. Experiments on teacher-student training and curricu-

lum learning

Table 1: Performance (Avg. CER & WER) (%) on 2-speaker

mixed WSJ0 corpus. Comparison between End-to-End multi-

speaker joint CTC/attention-based encoder-decoder systems

Model dev CER eval CER

multi-speaker (baseline) 13.72 15.31

+ parallel Att 12.48 14.51

+ TS 11.27 14.69

+ TS + parallel Att 11.46 13.54

++ CL 10.84 11.97

Model dev WER eval WER

multi-speaker (baseline) 21.24 23.41

+ parallel Att 20.28 23.04

+ TS 18.29 22.82

+ TS + parallel Att 18.84 21.64

++ CL 17.78 19.80

We first evaluated the performance of the baseline end-to-

end methods and our proposed methods on the mixed speech

test dataset in WSJ0. The results are presented in Table 1. The

first method is the joint CTC/attention-based encoder-decoder

network for multi-speaker speech, where the attention-decoder

module is shared among representations of each speaker. The

second method extends the single attention to speaker parallel

attention modules. We treated these two methods as the baseline

systems.

Then the teacher-student learning and curriculum learning

were applied step by step. With the teacher-student training,

it can be observed that the performances of the both baseline

systems are improved on both the dev and eval dataset. A

larger performance boost is even achieved on the speaker par-

allel attention method, 7% and 6% relative reduction of the

average WER on the dev and eval dataset respectively. This

proves that speaker parallel attention method has stronger ca-

pability of eliminating irrelevant information for current indi-

vidual speaker, and that it can learn better with the knowl-

edge from the attention output distribution of the teacher model.

Next we applied the curriculum learning strategy on the teacher-

student framework to further improve the performance. As we

can see in Table 1, our proposed end-to-end method combin-

ing teacher-student training, speaker parallel attention and cur-

riculum learning significantly improves the performance of two-

speaker mixed speech recognition, with more than 15% relative

improvement in both WER and CER.

4.3. Experiments on different curriculum learning strate-

gies

To investigate the impact of the curriculum learning strategy on

the performance of the models, we explored different strategies.

We tested on the end-to-end model with teacher-student train-

ing and speaker parallel attention, with two different strategies:

sorting the training data in the ascending order of SNR and

in the descending order of SNR. The experimental results are

shown in Table 2.

When the training data is sorted in the descending order

of SNR (absolute value), the model performed worse than the

one trained with the opposite order, even worse than the model

trained with randomly sorted data, which proves our conjecture

in Section 3.3. When the SNR is small, the energy difference

Table 2: Performance (Avg. CER & WER) (%) of different cur-

riculum learning strategies on the test dataset of the 2-speaker

mixed WSJ0 corpus.

Model CER WER

TS + parallel Att 13.54 21.64

++ CL (ascending SNRs) 11.97 19.80

++ CL (descending SNRs) 14.49 22.18

between two speakers is subtle and the model learns the separa-

tion ability. Later, the accuracy performance is enhanced with

the data having larger SNRs.

5. Conclusion

In this work, we have applied the sequence-level knowledge

distillation and the curriculum learning techniques to the multi-

speaker end-to-end speech recognition system based on the joint

CTC/attention-based encoder-decoder framework. A single-

speaker end-to-end speech recognition teacher model was used

to compute the soft label vectors as the target distribution to

compute the final loss function. To make the best use of the

training data, we further rearrange the data in the ascending or-

der of the SNR. Finally, our proposed model achieved over 15%
relative improvement on CER & WER.

In our future work, we would like to investigate other cur-

riculum learning strategies including other factors. And knowl-

edge distillation is only applied on the attention-based decoder,

which can also be extended to the CTC part.
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