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Abstract

Connectionist temporal classification (CTC) has been success-
fully used in speech recognition. It learns the alignments be-
tween speech frames and label sequences automatically without
explicit pre-generated frame-level labels. While this property is
convenient for shortening the training pipeline, it may become a
potential disadvantage for the frame-level system combination
due to inaccurate alignments. In this paper, a novel Dynamic
Time Warping (DTW) based position calibration algorithm is
proposed for joint decoding on two CTC based acoustic mod-
els. Furthermore, joint decoding for CTC and conventional hy-
brid NN-HMM models is also explored. Experiments on a large
vocabulary Mandarin speech recognition task show that the pro-
posed joint decoding of both CTC based and CTC-Hybrid based
systems can achieve a significant and consistent character error
rate reduction.

Index Terms: Joint decoding, Dynamic time warping, Connec-
tionist temporal classification, Hybrid system, System combi-
nation

1. Introduction

End-to-end speech recognition is a recently proposed approach
that directly transcribes speech to text without requiring pre-
defined alignment between acoustic frames and characters [1,
2,3, 4,5, 6]. Works on end-to-end speech recognition can be
categorized into two main approaches: Connectionist Temporal
Classification (CTC) [7, 1, 2, 3] and attention-based encoder-
decoder [8, 4, 5, 6]. Both methods learn a mapping between
variable-length input and output sequences. The key idea of
CTC is to use an intermediate label representation allowing rep-
etitions of labels and occurrences of blank labels to identify
no output label. The attention-based encoder-decoder directly
learns a mapping from acoustic frames to corresponding char-
acter sequences. At each output time step, the model emits a
character conditioned on the inputs as well as the history of the
target character.

Compared to the attention-based encoder-decoder model,
CTC differs in two aspects: i) the lengths of neural network
outputs are the same among different systems, which equals to
the length of acoustic frames. ii) the alignments between input
frames and labels are strictly monotonic as in hidden markov
models (HMM). These two properties enable an acoustic prob-
ability fusion between two CTC based systems as well as a
fusion between CTC and HMM based systems. However, the
fusion of any two systems is not straightforward, since the pos-
terior sequences are not synchronized in addition to different
modelling units in case of CTC and HMM. In order to allevi-
ate these problems, this work firstly introduces a novel method
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based on Dynamic Time Warping (DTW) to synchronize differ-
ent score sequences. Further, an acoustic score fusion method is
proposed to combine aligned sequences. Furthermore for CTC
based and hybrid NN-HMM system combination, a state-phone
mapping is introduced to unify the model units. Lastly, an at-
tenuated method to solve the absence of “’blank™ label outputs
in a hybrid HMM system is evaluated.

Many works have been proposed for system combination.
In ROVER [9], the 1-best word sequence of several speech rec-
ognizers are aligned and a single word transcription network
(WTN) is built. The best scoring word is selected at each node.
In [10], the generated lattice from each system is compressed
into a structure called confusion network where the most likely
word is picked at each position. The approach in [11], multiple
lattices generated for the same utterance from multiple systems
are combined. The optimization procedure is conducted to min-
imize the averaged Bayes Risk with respect to the Levenshtein
distance over multiple systems, then 1-best path for each utter-
ance is generated.

In comparison with approaches described above, joint de-
coding is more efficient. Instead of requiring a decoding proce-
dure for each system individually, it performs only one single
decoding stage with fused acoustic scores. In addition, the per-
formance of the weighted combination in state-level acoustic
log likelihoods is even better than 1-best or lattice level fusion
as reported in our early works[12, 13].

The rest of this paper is organized as follows: In Section
2, we revisit CTC speech recognition systems and explain why
unsynchronization between different CTC based systems exists.
In Section 3, we present how DTW is adapted to the joint de-
coding of CTC-based systems. The combination between CTC
and hybrid based systems is described in Section 4. In Section
5, the proposed approaches are evaluated and experimental re-
sults and analysis are given. Finally, we draw our conclusions
in Section 6.

2. Connectionist Temporal Classification

The key idea of CTC [7] is to use intermediate label represen-
tation v = (71, ..77), allowing repetitions of labels and occur-
rences of a blank label (—), which represents the special emis-
sion without labels, i.e., 7 € {1, ..., K} U{—}. CTC trains the
model to maximize P(l|x), the probability distribution over all
possible label sequences B~ (1) :
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where B is a many-to-one map: £’ £57, where £57 is
the set of possible labellings (i.e. the set of sequences of length
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less than or equal to T" over the original alphabet {1, ..., K'}).
The mapping is done by removing all blanks and repeated labels
from the paths(e.g. B(a — ab—) = B(—aa — abb) = aab).

CTC is generally applied on top of Recurrent Neural Net-
works (RNNs). Each RNN output unit is interpreted as the
probability of observing the corresponding label at a particu-
lar time. The probability of label sequence P(7r|x) is modeled
as being conditionally independent to the network outputs prod-
uct:

T
P(rlx) ~ [ [ P(rel®) = [ [ ym. 2
t=1 t=1

where y%, denotes the softmax activation of label 7; within the
RNN output y at time ¢.

The objective function to be minimised is defined as the
negative log likelihood of the ground truth label sequence 1*.
ie.,

Lore & —1n P(l*|w) 3)

The probability distribution P(I|x) can be computed efficiently
using the forward-backward algorithm as

It

Pllz) =7

u=1
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where I’ is a modified label sequence of I, which is made by
inserting blank symbols between each label and the beginning
and the end of a sequence allowing for blanks in the output (i.e.,
l=(ca,t),l'! =(—,c,—,a,—,t,—)). a(u) is the forward
variable, representing the total probability of all possible pre-
fixes (I1.,) that end with the u-th label, and 3;(u) is the back-
ward variable of all possible suffixes (I/,.;; ) that start with the
u-th label. The network can then be trained with standard back-
propagation by taking the derivative of the loss function with
respect to 4%, for any k label including the blank.

Since the label probabilities used for CTC are assumed to
be conditioned on the entire input sequence, therefore in cases
where the network is unidirectional it must wait until after a
given input segment is sufficiently complete to be identified
before emitting the corresponding label [14]. Thus with var-
ious emitting confidence of current input segments, different
acoustic neural networks will activate their outputs at differ-
ent frames. Consequently, this unsychronization becomes an
obstacle for frame-level posterior based system combination in
speech recognition.

3. Joint decoding of CTC based systems
3.1. Dynamic Time Warping algorithm

Dynamic Time Warping (DTW) algorithm is a popular process-
ing method in automatic speech recognition, time series analy-
sis, and many other pattern matching applications. It measures
the similarity between two temporal sequences, which may vary
in speed, and “warp” the time axis of one (or both) sequences
to achieve an optimal alignment [15]. Figure 1 shows a simple
example of the DTW algorithm.

3.2. Joint decoding of CTC based systems using DTW

Here, we adapt DTW to address the unsychronization issue in
Section 2. Instead of other applications of DTW to detect de-
sired patterns from target temporal sequence, we use DTW to
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Figure 1: An example of the utility of dynamic time warping. A)
The sequences have an overall similar shape, but they are not
aligned in the time axis. The distance between the i point on
one sequence and the i*" point on the other sequence is large.
B) DTW can efficiently find an alignment between the two se-
quences leading to a more accurate distance measure [16].

generate acoustic posterior alignments, against which the com-
bination is performed to deliver the sharing posterior sequence,
between two acoustic models. The DTW algorithm is adapted
in a multi-dimension and local constraint way as described in
Algorithm 1

Algorithm 1 Dynamic Time Warping algorithm with locality
constraint for joint decoding of CTC based systems

1: distance := DISTANCE_MEASURE

2: w := CONSTRAINT_WINDOW _SIZE

3: DTW :=array [0..n,0..n]

4: for ¢ :=0ton do

5. for j:=0ton do

6: DTWI[i, 5] :=inifinity

7:  end for

8: end for

9: DTW[0,0] :=0

10: for ¢ := 1ton do

11:  for j := max(1l, i — w) tomin(n, i + w) do

12: cost := distance(S[i], T[j])

13: DTW][z, 7] :=cost + minimum(DTW[: — 1, j],
DTW[i, j — 11, DTW[i — 1, j — 1])

14:  end for

15: end for

where S, T are acoustic posterior sequences from different
CTC systems.

(&)
(6)

And distance and w are two hyperparamters. For distance, sym-
metric KullbackLeibler divergence is utilized in this paper. The
constraint window size w was set to restrict matching within
range [—w, +w] with respect to the current position.

By backtracing the DTW matrix, an alignment between two
posterior sequences can be achieved. Then, element-wise fu-
sion can be performed. Compared to the straight forward joint
decoding method, there is only one mapping(one-fo-one map-
ping) between the elements to be combined, here are three alter-
native mappings in achieved DTW alignment, one-to-one, one-
to-many, many-to-one for the element of one sequence with re-
spect to its peer(s) in the other sequence. Considering all these
possible DTW alignment mappings, we propose a score com-
bination approach in a compact way, as illustrated in Figure 2,
where elements with many-to-one mapping are equally aver-
aged with its siblings to meet their sharing peer in the other se-
quence. The length of newly generated sequence will be shorter
than the originals.
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Figure 2: Acoustic score merge method according to DTW
alignments on the CTC system outputs in a compact way
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4. Joint decoding of CTC-Hybrid based
systems

Compared to joint decoding among CTC-based systems, the
acoustic combination between CTC and hybrid systems is
slightly more complicated, because the acoustic modeling units
differ between these two systems. Phone and character units are
usually used in the CTC model directly, while tied senone states
are commonly utilized for hybrid systems. However, if we prop-
erly design the decision tree of the state clustering, letting the
tree root correspond to an individual phone, the mapping be-
tween states and phone set becomes many to one, i.e. several
senone states may map to the same phone. Here we calculate
the posterior of particular phone in hybrid neural networks by
choosing the maximum probability among all its corresponding
candidate states. For example, there are K senone states affili-
ated with phone y,,, and then the selected posterior representing
the phone y,, is

Pryp(yu|x) = max{P(s{"|x), P(s¥*|x),...P(s%|x)} (7)

Though averaging across candidate states to represent the
phone y,, is also applicable, we deem maximum value of these
states preferable. Suppose there are only two phones, i.e. m, n
in phone set with 3 and 4 candidate states respectively. And the
probabilities of their candidate states are:

P(s¥"|x) = {0.15,0.18,0.16}
P(s¥"|x) = {0.01,0.02,0.43,0.05}

®
(C)]

It is obvious that the output y is more like a phone n, since
the confidence of its third states is much larger than any state’s
confidence in phone m. If we use the averaged probability,
P(ym|x) would be larger. While if we use maximum, phone
n would be more likely picked up. So maximum should be the
more reasonable choice and the results in the experiments also
confirm our conjunction.

In addition to the units mapping, we also have to address
the symbol blank in CTC, which does not exist in the hybrid
model. Inspired by [17], we use the blank probability in CTC
as a “gate” to control the mapped phone posterior from the hy-
brid system, and the acoustic score combination is only per-
formed on the non-blank phones. The acoustic combination be-
tween CTC and hybrid acoustic models is illustrated in Figure
3, where the newly generated posterior is calculated as:

Pete(y[x) + - (1 = Pere(yok %)) Prys(y[%)
N

Prew(ylx) =
(10)

where the P..(y|x) is the original phone acoustic score from
the CTC model, Phy(y|x) is the mapped phone probability
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from the hybrid system, « is its weight in combination. In this
way, the acoustic score Py (y|x) from the hybrid system can
be properly attenuated with (1 — Peie(yoin|x)). And N is L1
normalization factor to make newly generated score a probabil-

ity.
Non-blank phone
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Figure 3: Illustration of using CTC blank probability as a
“gate” to control the phone posteriors from the hybrid system.

5. Experiments
5.1. Data and Experiment Setup

In this work, we evaluated our proposed joint decoding methods
on a large vocabulary Mandarin speech recognition task. The
training set for all involved systems is 2000 hours of transcribed
data extracted from an online speech recognition service. For
evaluation, we construct 3 data sets: test-A which composes of
transcribed data from the previously mentioned online speech
recognition service, consisting of 6382 utterances. fest-B, a data
set collected from in-car voice assistant applications with 5240
utterances, and test-C, a fast test set with 667 utterances in to-
tal, in which speakers were asked to speak faster than usual. We
also constructed a development set from the online service as
test-A, including 2127 utterances, to tune « in Equation 10 and
the weights of different recognition systems for all combination
methods in our experiments. During decoding stages, all acous-
tic models are decoded with a single pass WFST-based decoder
which uses a 3-gram language model.

For experiments, we prepared four recognition systems,
CTC-DFSMN [18], CTC-CLD [19], CTC-LSTM [7] and HYB-
LSTM [20, 21]. The input features are 40-dimensional log-mel
filterbanks computed on a 25ms window with 10ms shift. The
outputs for all CTC based systems are 121 in dimension with
120 phone and a blank as targets. The output for hybrid system
is size of 9663, indicating the probability over context depen-
dent state targets.

CTC-DFSMN is trained with an 11 x 40 — 8 x [2048 —
512(20;0;2;0)] — 3 x 2048 — 512 — 121 architecture. The
input is spliced with a context window of 11(5+1+5). The Lay-
ers are 8 DFSMN components, 3 full-connected ReLU layers
and 1 projection softmax layer size of 121. For a more detailed
description of the architecture, we refer the reader to [18]. For
CTC-CLD, the same context window as CTC-DFSMN is used
as input. The network layers are a convolution layer with fil-
ter size of 9 X 8 and 256 feature maps, a maxpooling layer
with window size of 1 x 3 followed by 4 projection LSTM
layers [22] with 1536 cells and 320 in project dimension, se-
quentially, 2 full-connected ReLU layers and 1 softmax layer
size of 121 as output. For CTC-LSTM and HYB-LSTM, the
inputs are 40-dimensional log-mel filterbanks, the layers are 3
projection LSTM layers and 1 softmax layer with 121 and 9663
in dimension respectively. The lower frame rate [23] of 30ms is
adapted in all neural networks. All these models were trained



using KALDI [24] and EESEN [3]. The performance of these
baseline systems are shown as Table 1.

Table 1: CER (%) comparison of the CTC and hybrid baselines
Baseline Model | test-A | test-B | test-C
CTC-DFSMN 1424 | 13.56 | 21.24
CTC-CLD 14.71 14.35 | 22.59
CTC-LSTM 15.54 | 15.10 | 23.22
HYB-LSTM 1422 | 13.59 | 22.18

5.2. Evaluation on joint decoding of CTC-based Systems

The proposed joint decoding approach is performed and de-
noted as the symbol ®, the w parameter in DTW is chosen as 1
since we assume the match window should be around [-30ms,
30ms]. For comparison, the normal Kaldi minimum Bayes risk
(MBR) lattice combination and straight forward joint decoding
are also applied and denoted as the symbol & and naive respec-
tively. The experiment results are shown as Table 2.

Table 2: CER (%) comparison of different system combination
approaches between CTC systems. @ indicates the normal MBR
lattice combination using Kaldi, and ® indicates the joint de-
coding with different modes

Model Comb Mode | test-A | test-B | test-C
CTC-DFSMN - 14.24 | 13.56 | 21.24
CTC-DFSMN MBR
@ CTC-CLD lattice-comb 13.60 | 12.62 | 19.89
CTC-DFSMN naive 13.58 | 12.93 | 20.35
® CTC-CLD DTW 13.46 | 12.75 | 19.88

Model Comb Mode | test-A | test-B | test-C
CTC-CLD - 14.71 14.35 | 22.59
CTC-CLD MBR
@ CTC-LSTM | lattice-comb | #24 | 1314 | 20.17
CTC-CLD naive 14.49 | 13.65 | 20.80
® CTC-LSTM DTW 13.91 | 13.22 | 20.10

In test-A, the performance of naive mode joint decoding of
CTC-DFSMN and CTC-CLD is better than MBR lattice-comb
method. In our hypothesis, there are two factors, firstly, the data
source of fest-A and the training data are identical. Secondly,
the context window of input in these two systems are the same.
These make their alignments more accurate and the sychroniza-
tion between them fairly fine. However, the proposed DTW
joint decoding achieves even better CER to 13.46, which is 18%
(0.66 to 0.78) relative improvement compared with naive mode.
In test-B and test-C, DTW alignments could consistently help
improve the performance of the naive mode, and its effect is
more significant in the fast test-C, in which the confidence of
activation in each frame is more various between two systems.
Besides that, when the “vision” of two CTC based system are
not same, such as CTC-CLD and CTC-LSTM having individual
input context windows, the sychronization provided by DTW
presents to be more effective in their joint decoding as shown in
the lower part of Table 2.

5.3. Evaluation on joint decoding of CTC-Hybrid based
systems

As to the joint decoding between CTC and Hybrid based sys-
tems, firstly we derived the mapping between the tied states and
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phone set from the transition model trained by Kaldi, and then
perform the mapping and acoustic score fusion as described in
Section 4. The parameter « in Equation 10 is investigated across
the range [0.1 — 0.3] and tuned on the development set. All the
experimental results are listed in Table 3.

Table 3: CER (%) comparison of different system combination
approaches between CTC & Hybrid systems. @ indicates the
normal MBR lattice combination using Kaldi, and ® indicates
the joint decoding with different modes

Model Mode Map | test-A | test-B | test-C
Single Best - - 1422 | 1356 | 21.24
CTC-DFSMN MBR
@ HYB-LSTM | lattice-comb ) 1404 | 1294 | 2043
CTC-DFSMN naive max | 13.83 | 13.18 | 21.23
® HYB-LSTM ave 14.18 | 13.18 | 21.38

As shown in Table 3, in zest-A and test-B, the joint decoding
between CTC and hybrid based systems delivered a considerate
improvement on CER, while it took little effective in fest-C.
And the maximum is proven to be the more premium mapping
in comparision with the average solution.

6. Conclusion

In this work, we proposed a system combination method using
joint decoding between CTC-based and CTC-Hybrid based sys-
tems. For the CTC-based systems, a DTW algorithm is firstly
performed to align the CTC outputs, and then an appropriate
acoustic probability combination method is proposed to gener-
ate a new acoustic score sequence for decoding. Moreover, the
joint decoding between CTC & Hybrid systems is also designed
with modeling units mapping and accurate acoustic calculation.
Experimental results show that the newly proposed system com-
bination approach between two CTC based systems can get sig-
nificant and consistent improvements compared to the straight
forward joint decoding, and it is also competitive with the con-
ventional MBR lattice combination. And joint decoding method
between CTC and hybrid system could be applied to leverage
already finetuned conventional hybrid acoustic neural networks
to improve the performance of CTC recognition systems.
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