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Abstract

Replay spoofing attacks are a major threat for speaker verifica-

tion systems. Although many anti-spoofing systems or counter-

measures are proposed to detect dataset-specific replay attacks

with promising performance, they generalize poorly when ap-

plied on unseen datasets. In this work, the cross-dataset sce-

nario is treated as a domain-mismatch problem and dealt with

using a domain adversarial training framework. Compared with

previous approaches, features learned from this newly-designed

architecture are more discriminative for spoofing detection, but

more indistinguishable across different domains. Only labeled

source-domain data and unlabeled target-domain data are re-

quired during the adversarial training process, which can be re-

garded as unsupervised domain adaptation. Experiments on the

ASVspoof 2017 V.2 dataset as well as the physical access con-

dition part of BTAS 2016 dataset demonstrate that a significant

EER reduction of over relative 30% can be obtained after apply-

ing the proposed domain adversarial training framework. It is

shown that our proposed model can benefit from a large amount

of unlabeled target-domain training data to improve detection

accuracy.

Index Terms: domain adversarial training, unsupervised do-

main adaptation, replay spoofing detection, speaker verification

1. Introduction

Automatic speaker verification (ASV) has aroused researchers’

attention in the last few decades due to its convenience and reli-

ability for identity authentication. The success of applying deep

neural networks further made a significant progress [1, 2, 3, 4],

which led to its commercialization for applications in call cen-

ters, telephone banking, etc. However, the vulnerability of ASV

technologies exposes ASV systems to various spoofing attacks.

Depending on whether the spoofing attacks are performed at

the sensor level or not, they can be divided into two categories:

logical access (LA) condition with Speech synthesis (SS) and

voice conversion (VC) attacks, and physical access (PA) con-

dition with replay attacks. Compared with SS and VC attacks,

replay attacks pose a greater threat to ASV systems, due to that

not only replay audios can be acquired more easily by attack-

ers without any expertise, but also replay attacks are generally

more difficult to be detected.

Anti-spoofing technologies are developed to protect ASV

systems from malicious spoofing attacks. Recently, some work

focused on improving front-end features extracted from audio

[5, 6, 7, 8] as well as deep learning models [9, 10, 11, 12]

have shown the effect for spoofing detection. Even though

the performance of spoofing detection within a specific dataset

is promising, generalization towards data unseen in training is

still a major problem. Specifically, previous works [13, 14, 15]

showed great performance on the in-dataset scenario, such as

ASVspoof 2015 dataset [16] and BTAS 2016 dataset [17], but

degraded significantly for cross-dataset evaluation. Those re-

sults are reasonable since the replay configuration (e.g., record-

ing and playback devices) varies considerably among different

spoofing types, spoofing detectors often over-fit to the spoofing

types seen in the training set and therefore generalize poorly

to unseen ones. Different spoofing types lead to different data

distributions, which may explain the poor cross-dataset perfor-

mance. Here we define this behavior as a domain-mismatch

problem for replay attack detection, where the source domain

and target domain are defined to represent the distribution of

training data and testing data, respectively. For real-world appli-

cations, replay spoofing types of unseen data are unpredictable,

which makes it impossible to prepare training data of all poten-

tial spoofing types in advance. Moreover, recording and label-

ing new data is costly and therefore often unfeasible, while col-

lecting unlabeled data is relatively easy and affordable. In this

paper, we will try to address this domain-mismatch problem for

replay attacks where unlabeled target-domain data is available.

The domain-mismatch problem caused by the difference of

data distribution between the source domain and target domain

occurs in many tasks, such as face recognition [18] and speaker

recognition [19]. Approaches to address this problem are of-

ten termed as Domain Adaptation (DA), which aims at learn-

ing a discriminative predictor in the presence of a distribution

shift between two domains. If only unlabeled target domain

data is available in the training stage, it will be termed as Unsu-

pervised Domain Adaptation (UDA). One classic UDA method

is to adopt domain adversarial training (DAT), which aims at

learning features that are discriminative for the main learning

task but indistinguishable across domains by using adversarial

training between the feature extractor and the domain classifier.

This paper adopts the DAT approach on unsupervised do-

main adaptation to address the domain-mismatch problem for

replay spoofing attack detection. Deep features are first learned

by a feature extractor and then passed to two different classifi-

cation branches. One is the replay spoofing attack detector that

judges whether an attempt is a replay attack, the other is the

domain classifier which is connected through a gradient rever-

sal layer. An adapted version of a Light CNN (LCNN) model

is used as the baseline system, based on which we propose the

LCNN-DAT framework. Lastly, the impact of using a differ-

ent amount of unlabeled target-domain training data is further

compared in this paper.

The remainder of this paper is organized as follows. Sec-

tion 2 illustrates the proposed domain adversarial training ar-

chitecture for replay spoofing attack detection. In section 3, we
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introduce the experimental details as well as present the results

and analysis. Finally, conclusions are made in section 4.

2. Domain adversarial training for replay
spoofing attack detection

A conventional deep neural network for replay spoofing attack

detection usually contains two components: one is the feature

extractor that aims at finding discriminative features, the other is

the spoofing detector that maps the features into spoofing labels

which suggest whether they are spoofing attacks or genuine at-

tempts. Suppose input samples are x ∈ X and output labels are

y ∈ Y = {[0, 1], [1, 0]}, where X and Y are input feature space

and output label space, respectively. In a domain-mismatch sce-

nario, source domain data and target domain data share a similar

but different data distribution, denoted as S(x,y) and T (x,y),
respectively.

In order to alleviate the effect of domain mismatch, we pro-

pose a DAT architecture that learns deep features being dis-

criminative for replay spoofing detection but indistinguishable

across different domains, which is depicted in Figure 1. Dif-

ferent from a traditional neural network, a new branch is con-

nected after the feature extractor through a gradient reversal

layer, serving as the domain classifier. Therefore, the DAT ar-

chitecture consists of two output layers: one is the spoofing la-

bels y ∈ Y and the other is the domain labels d ∈ D. Here

Y = D = {[0, 1], [1, 0]}, because spoofing is commonly mod-

elled as a binary classification task.
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Figure 1: The proposed domain adversarial training (DAT) ar-

chitecture for spoofing detection. It includes a feature extrac-

tor (green), a spoofing detector (blue) and a domain classifier

(red). A gradient reversal layer (GRL), between the feature ex-

tractor and the domain classifier, reverses the gradient during

back-propagation.

Specifically, the corresponding mapping functions of the

feature extractor Gf (·; Θf ), spoofing detector Gy(·; Θy) and

domain classifier Gd(·; Θd) are formulated as follows:

f = Gf (x; Θf ) (1)

y = Gy(f ; Θy) (2)

d = Gd(f ; Θd) (3)

Denote xi as the i-th input sample with labels yi and di,

which indicates xi comes from the source domain ((xi,yi) ∼
S(x,y) if di = [0, 1]) or the target domain ((xi,yi) ∼

T (x,y) if di = [1, 0]). The spoofing detection loss and do-

main prediction loss of the i-th input sample are denoted as:

Li
y(Θf ,Θy) = Ly(Gy(Gf (xi; Θf );Θy),yi) (4)

Li
d(Θf ,Θd) = Ld(Gd(Gf (xi; Θf );Θd),di) (5)

With the purpose of finding spoofing-discriminative and

domain-invariant features, we aim to seek the best parameters

Θf , Θy and Θd that minimize the spoofing detection loss and

meanwhile maximize the domain prediction loss. Thus the total

loss of the whole network for N input samples can be formu-

lated as follows:

E(Θf ,Θy,Θd) =
∑

i=1,...,N
di=[0,1]

(

Li
y(Θf ,Θy)− λLi

d(Θf ,Θd)
)

−
∑

i=1,...,N
di=[1,0]

λLi
d(Θf ,Θd)

=
∑

i=1,...,N
di=[0,1]

Li
y(Θf ,Θy)− λ

N
∑

i=1

Li
d(Θf ,Θd)

(6)

where λ is a positive coefficient that trades off two losses during

the process of back-propagation. According to [20], eq. (6) can

be optimized theoretically by finding the saddle point Θ̂f , Θ̂y

and Θ̂d such that

Θ̂f , Θ̂y = arg min
Θf ,Θy

E(Θf ,Θy, Θ̂d) (7)

Θ̂d = argmax
Θd

E(Θ̂f , Θ̂y,Θd) (8)

Using stochastic gradient descent (SGD) with the aid of the

gradient reversal layer, the gradients for a source-domain sam-

ple update as follows:

θf = θf − α

(

∂Li
y

∂θf
− λ

∂Li
d

∂θf

)

, ∀ θf ∈ Θf (9)

θy = θy − α
∂Li

y

∂θy
, ∀ θy ∈ Θy (10)

θd = θd − αλ
∂Li

d

∂θd
, ∀ θd ∈ Θd (11)

where α is the learning rate. For a target-domain sample, pa-

rameters Θy do not update, and parameters Θd still update as

eq. (11) while parameters Θf change their updating rule:

θf = θf + αλ
∂Li

d

∂θf
, ∀ θf ∈ Θf (12)

3. Experiments

3.1. Datasets

Experiments are conducted on the ASVspoof 2017 V.2 dataset

[21] as well as the PA part of BTAS 2016 dataset [17] (only

genuine audios and replay attacks, denoted as BTAS-PA 2016

dataset). Detailed statistics on the numbers of utterances of two

datasets are shown in Table 1.

For the ASVspoof 2017 V.2 dataset, all genuine audios

come from a subset of original RedDots corpus, while the replay
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Table 1: Numbers of utterances in the ASVspoof 2017 V.2

dataset and BTAS-PA 2016 dataset.

Subset
ASVspoof 2017 V.2 BTAS-PA 2016

Train Dev Eval Train Dev Eval

Genuine 1507 760 1298 4973 4995 5576

Replay 1507 950 12008 2800 2800 4800

Total 3014 1710 13306 7773 7795 10376

audios are recorded under various replay configurations that in-

clude different combinations of acoustic environments, play-

back devices, and recording devices. The BTAS 2016 dataset is

based on the public AVspoof database [22], where surreptitious

recordings are also made in different setups and environmen-

tal conditions and two more “unknown” types of replay attacks

are further added into the evaluation set to make the competi-

tion more challenging. Additionally, both development set and

evaluation set of the ASVspoof 2017 V.2 dataset and BTAS-PA

2016 dataset are only reserved as testing sets in all experiments.

For model selection, we divide 10% of the training set as the

validation set.

3.2. Experimental setup

The front-end features are 257-dimension spectrograms that

are obtained via computing 512-point Fast Fourier Transform

(FFT) every 10 ms with a window size of 25 ms. The Librosa

[23] library is used to extract front-end features from raw data,

while we employ the Kaldi [24] toolkit to apply cepstral mean

and variance normalization (cmvn) per utterance with a 300-

frame sliding window. Besides, the mean and standard devia-

tion of the training data are calculated and used for global stan-

dardization.

Training is done in utterance fashion, meaning that padding

needs to be applied, since utterance lengths differ. In order to

process all utterances in parallel within a batch, we pad to the

longest length by repeating their features within every batch.

The batch size is set to 8 in all experiments.

All neural networks are implemented in PyTorch and

Xavier initialization [25] is used for all parametric layers.

Cross-entropy loss is adopted as the loss criterion and SGD op-

timizer with a momentum of 0.9 and a learning rate of 0.0001

is used during the training process of all models. Furthermore,

an end-to-end scoring method is adopted, which directly uses

score predictions from the neural network to calculate the per-

formance metric (EER). The EER is calculated using the toolkit

offered in the ASVspoof 2019 challenge.

3.3. Baseline system

Light CNN (LCNN) was the best system of the ASVspoof 2017

challenge [26], where Max-Feature Map (MFM) activations are

used after CNN modules. Since we use batch padding instead of

padding all utterances to the maximal length globally, the num-

ber of frames (denoted as T ) vary from batch to batch. Hence,

we adapt the LCNN implemented in [26] into a new version that

applies to variable lengths of input features.

The details of the LCNN architecture are described in Ta-

ble 2. The ceiling mode is used in all max-pooling layers to

make it applicable to short utterances with less than 32 frames.

Besides, mean pooling is applied in the time dimension after the

MaxPool5 layer, thus significantly reducing the number of pa-

rameters in the fully-connected (FC) FC6 layer. Dropout layers

Table 2: The architecture of Light CNN model.

Type
Filter Size
/Stride,Pad

Output Size #Params

Conv1 5× 5/1, 2 T × 257× 32 0.8K

MFM1 - T × 257× 16 -

MaxPool1 2× 2/2, 0 T/2× 129× 16 -

Conv2a 1× 1/1, 0 T/2× 129× 32 0.5K

MFM2a - T/2× 129× 16 -

Conv2b 3× 3/1, 1 T/2× 129× 48 6.9K

MFM2b - T/2× 129× 24 -

MaxPool2 2× 2/2, 0 T/4× 65× 24 -

Conv3a 1× 1/1, 0 T/4× 65× 48 1.2K

MFM3a - T/4× 65× 24 -

Conv3b 3× 3/1, 1 T/4× 65× 64 13.8K

MFM3b - T/4× 65× 32 -

MaxPool3 2× 2/2, 0 T/8× 33× 32 -

Conv4a 1× 1/1, 0 T/8× 33× 64 2.0K

MFM4a - T/8× 33× 32 -

Conv4b 3× 3/1, 1 T/8× 33× 32 9.2K

MFM4b - T/8× 33× 16 -

MaxPool4 2× 2/2, 0 T/16× 17× 16 -

Conv5a 1× 1/1, 0 T/16× 17× 32 0.5K

MFM5a - T/16× 17× 16 -

Conv5b 3× 3/1, 1 T/16× 17× 32 4.6K

MFM5b - T/16× 17× 16 -

MaxPool5 2× 2/2, 0 T/32× 9× 16 -

MeanPool5 - 144 -

FC6 - 128 18.4K

MFM6 - 64 -

FC7 - 64 4.1K

FC8 - 2 0.1K

Total - - 62.1K

with a 0.5 ratio are used in both FC7 and FC8.

3.4. Evaluation of the proposed LCNN-based domain ad-

versarial training framework

The LCNN-based DAT (LCNN-DAT) framework can be eas-

ily obtained from the baseline LCNN model. Specifically, lay-

ers from Conv1 to MFM6 are regarded as the feature extractor

while the FC7 and FC8 layers compose the spoofing detector.

A duplicate copy of the spoofing detector serves as the domain

classifier that is connected after the feature extractor through a

gradient reversal layer. However, we do not use dropout in the

domain classifier.

3.4.1. Domain adversarial training procedure

In order to compensate for the imbalance between the amount

of source-domain training data and target-domain training data,

we oversample the minority one to match the majority one. Af-

terward, batches of all source-domain data and batches of all

target-domain data are used to train the models in turn. More-

over, to suppress the noisy signals from the domain classifier at

the early training stages, we change the adaptation factor λ from

0 to 1 gradually rather than fix it initially, using the following

schedule:

λ =
2

1 + exp(−γ · e)
− 1 (13)

where γ is set to 0.1, and e refers to the number of epochs that

have been trained.
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(a) ASVspoof 2017 V.2 dataset (A) as the target domain (b) BTAS-PA 2016 dataset (B) as the target domain

Figure 2: EERs of the LCNN or LCNN-DAT models trained on different training data. The training data are A or B meaning that LCNN

models are trained on A-train or B-train only, while A+p%B (p=20, 40, 60, 80, 100) refers that LCNN-DAT models are trained on the

whole source-domain A-train and p% of target-domain B-train data, and vice versa for B+p%A.

3.4.2. LCNN-DAT Evaluation

Here, we denote the training set, development set and evalua-

tion set of the ASVspoof 2017 V.2 dataset and BTAS-PA 2016

dataset as A-train, A-dev, A-eval, B-train, B-dev, and B-eval, re-

spectively. Table 3 compares the performance of different sys-

tems in terms of EER(%).

Table 3: EERs (%) of the baseline LCNN models and the pro-

posed LCNN-DAT models on A-dev, A-eval, B-dev, and B-eval.

Using A-train+B-train as training data means A-train is source-

domain data while B-train is target-domain data, and vice versa

for B-train+A-train.

Models
Training

data
Testing datasets

A-dev A-eval B-dev B-eval

LCNN A-train 9.06 12.39 12.21 14.68

LCNN-
DAT

A-train+
B-train 9.47 11.86 7.67 11.10

LCNN B-train 16.31 16.94 0.32 8.44

LCNN-
DAT

B-train+
A-train 13.92 15.56 0.47 7.26

We achieve 9.06 EER on A-dev and 12.39 EER on A-eval,

which suggests our implementation of LCNN is consistent with

[11] but generalizes slightly better. Moreover, the LCNN mod-

els perform well on both B-dev and B-eval but turn out to over-

fit on B-train, which explains the significant performance dif-

ference. Although the LCNN models perform well within the

same domain, they generalize poorly across these two datasets.

However, the performance degradation across domains can be

effectively reduced by introducing the proposed domain adver-

sarial training architecture, without worsening its overall per-

formance within the original source domain. Specifically, the

relative reductions of performance degradation are 38% on B-

dev and 57% on B-eval if using LCNN-DAT models trained

on A-train+B-train, and are 33% on A-dev and 30% on A-eval

if using LCNN-DAT models trained on B-train+A-train. The

results show that via introducing domain adversarial training

into the LCNN framework, the LCNN-DAT models generalize

much better for cross-dataset replay spoofing attack detection

than that without DAT.

3.4.3. Effects of target-domain data amount in LCNN-DAT

The whole target-domain training set is used for domain adver-

sarial training in Section 3.4.2. Here we randomly divide it into

five folds and then use the first 1, 2, 3, 4 and 5 folds as the un-

labeled target-domain training data respectively, which ensures

that the smaller training set is a subset of the larger one.

Figure 2 shows the results of all systems. Significant cross-

domain performance improvements are obtained regardless of

the target-domain data amount used in all cases. However, a

tendency is seen that the LCNN-DAT models generalize better

across domains using more target-domain training data, without

affecting their overall performance within the original source-

domain dataset. Furthermore, the relative improvement is more

significant when BTAS-PA 2016 dataset is used as the target

domain rather than the ASVspoof 2017 V.2 dataset. The reasons

are probably that the dataset size of B-train is more than twice of

that of A-train, thus effectively helping the LCNN-DAT models

to learn better from more target-domain data and achieve better

cross-domain performance.

4. Conclusions

In order to address the domain-mismatch problem for replay

spoofing attack detection, we propose a domain adversarial

training architecture on unsupervised domain adaptation by us-

ing extra unlabeled target-domain training data. Via the ad-

versarial training between the feature extractor and the domain

classifier, the DAT models learn features that are discrimina-

tive in spoofing detection but indistinguishable across differ-

ent domains. Experiments conducted on the ASVspoof 2017

V.2 dataset and BTAS-PA 2016 dataset show that the proposed

LCNN-based DAT (LCNN-DAT) framework generalizes better

across datasets than the LCNN model, with an over relative

30% EER reduction if using the whole target-domain training

set. Furthermore, better cross-domain performance tends to be

obtained by the LCNN-DAT models if more unlabeled target-

domain data are used for training.
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